Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography

医学 数字减影血管造影 置信区间 放射科 诊断准确性 血管造影 金标准(测试) 动脉瘤 病变 内科学 外科
作者
Xin Wei,Jing Jiang,Wenting Cao,Han Yu,Hao Deng,Jinhua Chen,Shanwei Bai,Zhiming Zhou
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:149: 110169-110169 被引量:20
标识
DOI:10.1016/j.ejrad.2022.110169
摘要

The aim of this study was to evaluate whether a novel head and neck artificial intelligence (AI)-assisted diagnostic system based on a three-dimensional convolutional neural network (3D-CNN) could improve the accuracy, efficiency and working mode of intracranial aneurysm (IA) detection.A total of 212 patients who underwent computed tomography angiography (CTA) and digital subtraction angiography (DSA) were retrospectively included. We used three diagnostic modes to detect IAs with CTA: AI, physicians and AI + physicians. Taking the diagnostic results of DSA as the gold standard, the sensitivity, specificity, accuracy, mean reporting time, and interobserver consistency of the three diagnostic modes were calculated and compared at the patient and lesion levels.Of 212 patients, 179 were diagnosed with IAs by DSA, and 224 IAs were analyzed. The sensitivity, specificity and accuracy of the AI system in diagnosing aneurysms were 84.9% (95% confidence interval [CI], 78.9-89.5%), 18.2% (95% CI, 8.2-34.8%) and 74.5% (95% CI, 68.3-80.0%) at the patient-level, and 77.2% (95% CI, 71.3-82.3%), 14.0% (95% CI, 6.2-27.6%) and 67.0% (95% CI, 61.2-72.4%) at the lesion-level, respectively. With AI assistance, junior physicians had the similar diagnostic performance as senior physicians at the patient (sensitivity 95.0% vs. 95.0%, specificity 48.5% vs. 57.6%, accuracy 87.7% vs. 89.2%, p = 0.690) and lesion levels (sensitivity 88.0% vs. 89.7%, specificity 32.0% vs. 38.0%, accuracy 77.8% vs. 80.3%, p = 1.000), especially for aneurysms < 5 mm (sensitivity 83.2% vs. 87.6%, specificity 60.0% vs. 63.2%, accuracy 75.4% vs. 78.9%, p = 0.424). The reporting efficiency of junior and senior physicians improved by 20.7% (141.1 ± 52.6 s to 111.9 ± 46.3 s, p = 0.004) and 18.8% (113.2 ± 42.5 s to 91.9 ± 41.2 s, p = 0.011), respectively.This 3D-CNN-based AI system significantly improved the accuracy and efficiency of physician detection of IA. The AI + physicians work mode could have a major influence on daily clinical practice and clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nuoran完成签到,获得积分10
1秒前
1秒前
折光完成签到,获得积分10
1秒前
大糖糕僧发布了新的文献求助10
2秒前
aaa发布了新的文献求助10
3秒前
3秒前
木又寸完成签到 ,获得积分10
3秒前
paper发布了新的文献求助10
4秒前
4秒前
TGGXS完成签到,获得积分10
4秒前
白日梦想家完成签到 ,获得积分10
4秒前
xuekaizong发布了新的文献求助10
7秒前
烟花应助学医自救采纳,获得10
7秒前
8秒前
Orange应助妮妮采纳,获得10
8秒前
赘婿应助拯救小岛采纳,获得10
9秒前
踏雪无痕6509完成签到,获得积分10
9秒前
唐俊杰完成签到,获得积分10
9秒前
Orange应助任性映秋采纳,获得10
9秒前
林钇腾完成签到,获得积分10
9秒前
烟花应助小航2025采纳,获得10
10秒前
aaa完成签到,获得积分10
10秒前
英吉利25发布了新的文献求助30
13秒前
李月月发布了新的文献求助10
13秒前
陌陌完成签到,获得积分20
13秒前
llly完成签到,获得积分10
13秒前
豆豆完成签到,获得积分10
14秒前
14秒前
15秒前
充电宝应助每天都在做梦采纳,获得10
16秒前
jimoon完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助10
16秒前
zxq完成签到,获得积分20
17秒前
KMidly完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
liu发布了新的文献求助10
18秒前
jimoon发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913037
求助须知:如何正确求助?哪些是违规求助? 4187850
关于积分的说明 13005445
捐赠科研通 3956288
什么是DOI,文献DOI怎么找? 2169145
邀请新用户注册赠送积分活动 1187530
关于科研通互助平台的介绍 1095032