Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography

医学 数字减影血管造影 置信区间 放射科 诊断准确性 血管造影 金标准(测试) 动脉瘤 病变 内科学 外科
作者
Xin Wei,Jing Jiang,Wenting Cao,Han Yu,Hao Deng,Jinhua Chen,Shanwei Bai,Zhiming Zhou
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:149: 110169-110169 被引量:20
标识
DOI:10.1016/j.ejrad.2022.110169
摘要

The aim of this study was to evaluate whether a novel head and neck artificial intelligence (AI)-assisted diagnostic system based on a three-dimensional convolutional neural network (3D-CNN) could improve the accuracy, efficiency and working mode of intracranial aneurysm (IA) detection.A total of 212 patients who underwent computed tomography angiography (CTA) and digital subtraction angiography (DSA) were retrospectively included. We used three diagnostic modes to detect IAs with CTA: AI, physicians and AI + physicians. Taking the diagnostic results of DSA as the gold standard, the sensitivity, specificity, accuracy, mean reporting time, and interobserver consistency of the three diagnostic modes were calculated and compared at the patient and lesion levels.Of 212 patients, 179 were diagnosed with IAs by DSA, and 224 IAs were analyzed. The sensitivity, specificity and accuracy of the AI system in diagnosing aneurysms were 84.9% (95% confidence interval [CI], 78.9-89.5%), 18.2% (95% CI, 8.2-34.8%) and 74.5% (95% CI, 68.3-80.0%) at the patient-level, and 77.2% (95% CI, 71.3-82.3%), 14.0% (95% CI, 6.2-27.6%) and 67.0% (95% CI, 61.2-72.4%) at the lesion-level, respectively. With AI assistance, junior physicians had the similar diagnostic performance as senior physicians at the patient (sensitivity 95.0% vs. 95.0%, specificity 48.5% vs. 57.6%, accuracy 87.7% vs. 89.2%, p = 0.690) and lesion levels (sensitivity 88.0% vs. 89.7%, specificity 32.0% vs. 38.0%, accuracy 77.8% vs. 80.3%, p = 1.000), especially for aneurysms < 5 mm (sensitivity 83.2% vs. 87.6%, specificity 60.0% vs. 63.2%, accuracy 75.4% vs. 78.9%, p = 0.424). The reporting efficiency of junior and senior physicians improved by 20.7% (141.1 ± 52.6 s to 111.9 ± 46.3 s, p = 0.004) and 18.8% (113.2 ± 42.5 s to 91.9 ± 41.2 s, p = 0.011), respectively.This 3D-CNN-based AI system significantly improved the accuracy and efficiency of physician detection of IA. The AI + physicians work mode could have a major influence on daily clinical practice and clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助闾丘剑封采纳,获得10
刚刚
小梅同学完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
852应助东城区吴彦祖采纳,获得10
1秒前
1秒前
科研通AI6应助tom采纳,获得10
2秒前
搜集达人应助读研暴躁哥采纳,获得10
3秒前
CX330完成签到,获得积分10
3秒前
3秒前
FX1688完成签到 ,获得积分10
3秒前
酷波er应助牧海冬采纳,获得10
5秒前
5秒前
5秒前
YUYUYU发布了新的文献求助10
5秒前
巴拉巴拉发布了新的文献求助10
5秒前
芒果布丁完成签到 ,获得积分10
5秒前
清清清完成签到 ,获得积分10
5秒前
6秒前
6秒前
聚砂成塔完成签到,获得积分10
6秒前
gy关闭了gy文献求助
6秒前
Liujiawen0008发布了新的文献求助10
6秒前
6秒前
renyi97发布了新的文献求助10
6秒前
子车茗应助CHER采纳,获得30
7秒前
逍遥完成签到,获得积分10
7秒前
手可摘星辰不去高声语完成签到,获得积分10
7秒前
7秒前
粗暴的达发布了新的文献求助10
7秒前
天天快乐应助lcm采纳,获得10
7秒前
WFZ完成签到,获得积分10
8秒前
开放的无声完成签到,获得积分10
8秒前
long完成签到 ,获得积分10
8秒前
Camellia完成签到,获得积分20
8秒前
8秒前
合适祥完成签到,获得积分10
8秒前
朴实的哈密瓜数据线完成签到,获得积分10
9秒前
小梅同学发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041