Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography

医学 数字减影血管造影 置信区间 放射科 诊断准确性 血管造影 金标准(测试) 动脉瘤 病变 内科学 外科
作者
Xin Wei,Jing Jiang,Wenting Cao,Han Yu,Hao Deng,Jinhua Chen,Shanwei Bai,Zhiming Zhou
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:149: 110169-110169 被引量:13
标识
DOI:10.1016/j.ejrad.2022.110169
摘要

The aim of this study was to evaluate whether a novel head and neck artificial intelligence (AI)-assisted diagnostic system based on a three-dimensional convolutional neural network (3D-CNN) could improve the accuracy, efficiency and working mode of intracranial aneurysm (IA) detection.A total of 212 patients who underwent computed tomography angiography (CTA) and digital subtraction angiography (DSA) were retrospectively included. We used three diagnostic modes to detect IAs with CTA: AI, physicians and AI + physicians. Taking the diagnostic results of DSA as the gold standard, the sensitivity, specificity, accuracy, mean reporting time, and interobserver consistency of the three diagnostic modes were calculated and compared at the patient and lesion levels.Of 212 patients, 179 were diagnosed with IAs by DSA, and 224 IAs were analyzed. The sensitivity, specificity and accuracy of the AI system in diagnosing aneurysms were 84.9% (95% confidence interval [CI], 78.9-89.5%), 18.2% (95% CI, 8.2-34.8%) and 74.5% (95% CI, 68.3-80.0%) at the patient-level, and 77.2% (95% CI, 71.3-82.3%), 14.0% (95% CI, 6.2-27.6%) and 67.0% (95% CI, 61.2-72.4%) at the lesion-level, respectively. With AI assistance, junior physicians had the similar diagnostic performance as senior physicians at the patient (sensitivity 95.0% vs. 95.0%, specificity 48.5% vs. 57.6%, accuracy 87.7% vs. 89.2%, p = 0.690) and lesion levels (sensitivity 88.0% vs. 89.7%, specificity 32.0% vs. 38.0%, accuracy 77.8% vs. 80.3%, p = 1.000), especially for aneurysms < 5 mm (sensitivity 83.2% vs. 87.6%, specificity 60.0% vs. 63.2%, accuracy 75.4% vs. 78.9%, p = 0.424). The reporting efficiency of junior and senior physicians improved by 20.7% (141.1 ± 52.6 s to 111.9 ± 46.3 s, p = 0.004) and 18.8% (113.2 ± 42.5 s to 91.9 ± 41.2 s, p = 0.011), respectively.This 3D-CNN-based AI system significantly improved the accuracy and efficiency of physician detection of IA. The AI + physicians work mode could have a major influence on daily clinical practice and clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjmanjie完成签到,获得积分10
刚刚
胡嘉颖发布了新的文献求助10
刚刚
李爱国应助LXZY采纳,获得10
1秒前
OhoOu完成签到 ,获得积分10
1秒前
YangSY发布了新的文献求助10
2秒前
xyg发布了新的文献求助10
2秒前
子羽完成签到,获得积分10
4秒前
XinXin完成签到,获得积分10
6秒前
6秒前
诺hn完成签到 ,获得积分10
7秒前
7秒前
ff完成签到 ,获得积分10
8秒前
可爱的函函应助xyg采纳,获得10
9秒前
赘婿应助punker采纳,获得10
9秒前
心灵美的修洁完成签到 ,获得积分10
11秒前
12秒前
冲冲冲!发布了新的文献求助10
12秒前
san完成签到,获得积分10
14秒前
15秒前
锋锋完成签到,获得积分10
15秒前
花花发布了新的文献求助20
17秒前
搜集达人应助缓慢的博采纳,获得10
17秒前
mz完成签到,获得积分10
19秒前
decademe发布了新的文献求助10
19秒前
冰镇白开水完成签到,获得积分10
20秒前
Yocohua发布了新的文献求助10
21秒前
21秒前
星宿陨完成签到,获得积分10
23秒前
nushell完成签到,获得积分10
24秒前
25秒前
27秒前
29秒前
缓慢的博发布了新的文献求助10
29秒前
包容新蕾完成签到 ,获得积分10
34秒前
尼尼发布了新的文献求助50
34秒前
1111完成签到,获得积分10
36秒前
LXZY发布了新的文献求助10
36秒前
儒雅沛凝发布了新的文献求助10
36秒前
希望天下0贩的0应助李庆采纳,获得10
36秒前
打打应助干净的小蜜蜂采纳,获得30
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254046
求助须知:如何正确求助?哪些是违规求助? 2896409
关于积分的说明 8292456
捐赠科研通 2565281
什么是DOI,文献DOI怎么找? 1392910
科研通“疑难数据库(出版商)”最低求助积分说明 652405
邀请新用户注册赠送积分活动 629837