Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography

医学 数字减影血管造影 置信区间 放射科 诊断准确性 血管造影 金标准(测试) 动脉瘤 病变 内科学 外科
作者
Xin Wei,Jing Jiang,Wenting Cao,Han Yu,Hao Deng,Jinhua Chen,Shanwei Bai,Zhiming Zhou
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:149: 110169-110169 被引量:20
标识
DOI:10.1016/j.ejrad.2022.110169
摘要

The aim of this study was to evaluate whether a novel head and neck artificial intelligence (AI)-assisted diagnostic system based on a three-dimensional convolutional neural network (3D-CNN) could improve the accuracy, efficiency and working mode of intracranial aneurysm (IA) detection.A total of 212 patients who underwent computed tomography angiography (CTA) and digital subtraction angiography (DSA) were retrospectively included. We used three diagnostic modes to detect IAs with CTA: AI, physicians and AI + physicians. Taking the diagnostic results of DSA as the gold standard, the sensitivity, specificity, accuracy, mean reporting time, and interobserver consistency of the three diagnostic modes were calculated and compared at the patient and lesion levels.Of 212 patients, 179 were diagnosed with IAs by DSA, and 224 IAs were analyzed. The sensitivity, specificity and accuracy of the AI system in diagnosing aneurysms were 84.9% (95% confidence interval [CI], 78.9-89.5%), 18.2% (95% CI, 8.2-34.8%) and 74.5% (95% CI, 68.3-80.0%) at the patient-level, and 77.2% (95% CI, 71.3-82.3%), 14.0% (95% CI, 6.2-27.6%) and 67.0% (95% CI, 61.2-72.4%) at the lesion-level, respectively. With AI assistance, junior physicians had the similar diagnostic performance as senior physicians at the patient (sensitivity 95.0% vs. 95.0%, specificity 48.5% vs. 57.6%, accuracy 87.7% vs. 89.2%, p = 0.690) and lesion levels (sensitivity 88.0% vs. 89.7%, specificity 32.0% vs. 38.0%, accuracy 77.8% vs. 80.3%, p = 1.000), especially for aneurysms < 5 mm (sensitivity 83.2% vs. 87.6%, specificity 60.0% vs. 63.2%, accuracy 75.4% vs. 78.9%, p = 0.424). The reporting efficiency of junior and senior physicians improved by 20.7% (141.1 ± 52.6 s to 111.9 ± 46.3 s, p = 0.004) and 18.8% (113.2 ± 42.5 s to 91.9 ± 41.2 s, p = 0.011), respectively.This 3D-CNN-based AI system significantly improved the accuracy and efficiency of physician detection of IA. The AI + physicians work mode could have a major influence on daily clinical practice and clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
左手树完成签到,获得积分10
4秒前
4秒前
黎L完成签到,获得积分10
5秒前
满意沧海应助荀之玉采纳,获得10
5秒前
csl完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
研友_nxV4m8发布了新的文献求助10
7秒前
8秒前
阿凉发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
SciGPT应助小黄采纳,获得10
11秒前
11秒前
ZY完成签到 ,获得积分10
11秒前
香蕉觅云应助帅气之双采纳,获得10
11秒前
科研菜鸟发布了新的文献求助20
11秒前
小兔子乖乖完成签到 ,获得积分10
12秒前
Ava应助zhangsudi采纳,获得10
12秒前
林菲艳发布了新的文献求助10
12秒前
12秒前
单薄遥发布了新的文献求助10
13秒前
13秒前
13秒前
Zer0发布了新的文献求助10
13秒前
14秒前
爆米花应助xueshudagongzai采纳,获得10
15秒前
汉堡包应助芥殊采纳,获得10
17秒前
sunny完成签到,获得积分10
17秒前
17秒前
Hello应助小小探究者采纳,获得10
18秒前
jirgel发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469034
求助须知:如何正确求助?哪些是违规求助? 4572251
关于积分的说明 14334549
捐赠科研通 4499069
什么是DOI,文献DOI怎么找? 2464895
邀请新用户注册赠送积分活动 1453435
关于科研通互助平台的介绍 1427961