Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography

医学 数字减影血管造影 置信区间 放射科 诊断准确性 血管造影 金标准(测试) 动脉瘤 病变 内科学 外科
作者
Xin Wei,Jing Jiang,Wenting Cao,Han Yu,Hao Deng,Jinhua Chen,Shanwei Bai,Zhiming Zhou
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:149: 110169-110169 被引量:13
标识
DOI:10.1016/j.ejrad.2022.110169
摘要

The aim of this study was to evaluate whether a novel head and neck artificial intelligence (AI)-assisted diagnostic system based on a three-dimensional convolutional neural network (3D-CNN) could improve the accuracy, efficiency and working mode of intracranial aneurysm (IA) detection.A total of 212 patients who underwent computed tomography angiography (CTA) and digital subtraction angiography (DSA) were retrospectively included. We used three diagnostic modes to detect IAs with CTA: AI, physicians and AI + physicians. Taking the diagnostic results of DSA as the gold standard, the sensitivity, specificity, accuracy, mean reporting time, and interobserver consistency of the three diagnostic modes were calculated and compared at the patient and lesion levels.Of 212 patients, 179 were diagnosed with IAs by DSA, and 224 IAs were analyzed. The sensitivity, specificity and accuracy of the AI system in diagnosing aneurysms were 84.9% (95% confidence interval [CI], 78.9-89.5%), 18.2% (95% CI, 8.2-34.8%) and 74.5% (95% CI, 68.3-80.0%) at the patient-level, and 77.2% (95% CI, 71.3-82.3%), 14.0% (95% CI, 6.2-27.6%) and 67.0% (95% CI, 61.2-72.4%) at the lesion-level, respectively. With AI assistance, junior physicians had the similar diagnostic performance as senior physicians at the patient (sensitivity 95.0% vs. 95.0%, specificity 48.5% vs. 57.6%, accuracy 87.7% vs. 89.2%, p = 0.690) and lesion levels (sensitivity 88.0% vs. 89.7%, specificity 32.0% vs. 38.0%, accuracy 77.8% vs. 80.3%, p = 1.000), especially for aneurysms < 5 mm (sensitivity 83.2% vs. 87.6%, specificity 60.0% vs. 63.2%, accuracy 75.4% vs. 78.9%, p = 0.424). The reporting efficiency of junior and senior physicians improved by 20.7% (141.1 ± 52.6 s to 111.9 ± 46.3 s, p = 0.004) and 18.8% (113.2 ± 42.5 s to 91.9 ± 41.2 s, p = 0.011), respectively.This 3D-CNN-based AI system significantly improved the accuracy and efficiency of physician detection of IA. The AI + physicians work mode could have a major influence on daily clinical practice and clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
抹缇卡完成签到 ,获得积分10
刚刚
1秒前
菠萝卷发布了新的文献求助10
1秒前
娜娜呀发布了新的文献求助20
1秒前
wsh071117发布了新的文献求助10
1秒前
may发布了新的文献求助10
1秒前
Wecple完成签到 ,获得积分10
2秒前
3秒前
3秒前
lqkcqmu发布了新的文献求助10
3秒前
3秒前
共享精神应助runer采纳,获得10
3秒前
3秒前
dida完成签到,获得积分10
4秒前
4秒前
gaoyuxuan完成签到,获得积分10
4秒前
5秒前
Robe发布了新的文献求助30
5秒前
spy完成签到,获得积分10
5秒前
6秒前
6秒前
mysilicon应助黄花采纳,获得10
6秒前
碧蓝莫言给碧蓝莫言的求助进行了留言
6秒前
6秒前
6秒前
7秒前
7秒前
lonf完成签到,获得积分10
7秒前
yn完成签到 ,获得积分10
7秒前
8秒前
北欧海盗发布了新的文献求助10
8秒前
spy发布了新的文献求助10
8秒前
布布完成签到,获得积分10
8秒前
9秒前
10秒前
Mannone发布了新的文献求助10
10秒前
ZOEzoe发布了新的文献求助30
10秒前
11秒前
Jasper应助cannon8采纳,获得50
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600