Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst

脱氢 催化作用 氢气储存 复合数 离解(化学) 活化能 氢经济 化学工程 材料科学 成核 解吸 价(化学) 化学 物理化学 复合材料 制氢 吸附 有机化学 工程类
作者
Bin Liu,Bing Zhang,Xiaodong Chen,Yuzhen Lv,Hanyu Huang,Jianguang Yuan,Wei Lv,Ying Wu
出处
期刊:Materials Today Nano [Elsevier]
卷期号:17: 100168-100168 被引量:22
标识
DOI:10.1016/j.mtnano.2021.100168
摘要

Transition metals are the traditional catalysts to improve the hydrogen storage performance of Mg. In the present article, the multi-valence Co catalyst ([email protected]) is prepared to improve the kinetics of Mg. The dehydrogenation temperature decreases, and desorption kinetics of MgH2 is significantly enhanced by the addition of the catalyst. The dehydrogenation of MgH2–[email protected] composite is a random bulk nucleation/surface and three-dimensional growth with constant interface velocity reaction. Although the dehydrogenation activation energy of MgH2–[email protected] composite is reduced, the enthalpy change and entropy change of the composite are similar to the raw MgH2, which means the dehydrogenation is mainly dissociation of MgH2. Besides, the cycle performance of MgH2–[email protected] composite is stable. The damping of the performance for the composite is negligible after 50 cycles, which benefits from the in-site formed Co3MgC0.5 in the composite. The Co3MgC0.5 can act as a ‘hydrogen pump’ to adjust the hydrogen storage performance of Mg. Theoretical studies show that multi-valence Co can trap H2 molecules and weaken their σ-bonds. In the first cycle, the bridging effect of Co plays an important role in the improvement of H2 dissociation and release. In the subsequent cycles, Co6C1 becomes the active site to assist the hydrogenation and dehydrogenation of the composite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤奋的汉堡完成签到,获得积分10
2秒前
单向度的人完成签到,获得积分10
3秒前
Leon应助cctv18采纳,获得20
4秒前
Mascappa1989完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
7秒前
7秒前
cctv18给rookie的求助进行了留言
9秒前
9秒前
9秒前
Hanyu发布了新的文献求助10
10秒前
10秒前
烧烤发布了新的文献求助10
11秒前
12秒前
李爱国应助17808352679采纳,获得10
12秒前
失眠惜海发布了新的文献求助10
13秒前
不安青牛应助fst采纳,获得10
13秒前
14秒前
14秒前
沙拉发布了新的文献求助10
14秒前
15秒前
15秒前
汉堡包应助科研不是科幻采纳,获得10
15秒前
斯文败类应助沙拉采纳,获得10
18秒前
秋霜应助TopBanana采纳,获得10
19秒前
19秒前
Loooong应助liuuuuuuuuuuuuu采纳,获得20
19秒前
20秒前
21秒前
ECHO发布了新的文献求助10
21秒前
安好有多好完成签到,获得积分20
22秒前
谨慎鞅发布了新的文献求助10
24秒前
失眠夏之发布了新的文献求助10
26秒前
迷惘墨香发布了新的文献求助10
27秒前
29秒前
30秒前
小蘑菇应助les采纳,获得10
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489162
求助须知:如何正确求助?哪些是违规求助? 3076508
关于积分的说明 9145530
捐赠科研通 2768751
什么是DOI,文献DOI怎么找? 1519398
邀请新用户注册赠送积分活动 703805
科研通“疑难数据库(出版商)”最低求助积分说明 702009