Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst

脱氢 催化作用 氢气储存 复合数 离解(化学) 活化能 氢经济 化学工程 材料科学 成核 解吸 价(化学) 化学 物理化学 复合材料 制氢 吸附 有机化学 工程类
作者
Bin Liu,Bing Zhang,Xiaodong Chen,Yuzhen Lv,Hanyu Huang,Jianguang Yuan,Wei Lv,Ying Wu
出处
期刊:Materials Today Nano [Elsevier]
卷期号:17: 100168-100168 被引量:22
标识
DOI:10.1016/j.mtnano.2021.100168
摘要

Transition metals are the traditional catalysts to improve the hydrogen storage performance of Mg. In the present article, the multi-valence Co catalyst ([email protected]) is prepared to improve the kinetics of Mg. The dehydrogenation temperature decreases, and desorption kinetics of MgH2 is significantly enhanced by the addition of the catalyst. The dehydrogenation of MgH2–[email protected] composite is a random bulk nucleation/surface and three-dimensional growth with constant interface velocity reaction. Although the dehydrogenation activation energy of MgH2–[email protected] composite is reduced, the enthalpy change and entropy change of the composite are similar to the raw MgH2, which means the dehydrogenation is mainly dissociation of MgH2. Besides, the cycle performance of MgH2–[email protected] composite is stable. The damping of the performance for the composite is negligible after 50 cycles, which benefits from the in-site formed Co3MgC0.5 in the composite. The Co3MgC0.5 can act as a ‘hydrogen pump’ to adjust the hydrogen storage performance of Mg. Theoretical studies show that multi-valence Co can trap H2 molecules and weaken their σ-bonds. In the first cycle, the bridging effect of Co plays an important role in the improvement of H2 dissociation and release. In the subsequent cycles, Co6C1 becomes the active site to assist the hydrogenation and dehydrogenation of the composite.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
陈文娜发布了新的文献求助10
1秒前
无情灵松发布了新的文献求助10
1秒前
1秒前
TinTin完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
仇悦发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
玛卡巴卡发布了新的文献求助10
4秒前
微醺发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI6应助典雅芫采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
周美言发布了新的文献求助10
6秒前
牛马发布了新的文献求助10
6秒前
臻灏发布了新的文献求助10
6秒前
6秒前
BowieHuang应助exosome采纳,获得10
7秒前
上杉绘梨衣完成签到,获得积分10
7秒前
烂漫半山完成签到,获得积分10
7秒前
7秒前
ValerieLI完成签到,获得积分10
8秒前
成就钧完成签到,获得积分10
8秒前
8秒前
8秒前
赘婿应助三木采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545904
求助须知:如何正确求助?哪些是违规求助? 4631873
关于积分的说明 14623268
捐赠科研通 4573585
什么是DOI,文献DOI怎么找? 2507662
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455606