(Keynote) The Introduction of Intercalation into Battery Science: 1968-1990

插层(化学) 离子键合 阴极 离子电导率 电池(电) 氧化物 锂(药物) 材料科学 化学 纳米技术 化学工程 无机化学 离子 电极 物理 物理化学 冶金 有机化学 工程类 热力学 医学 功率(物理) 电解质 内分泌学
作者
M. Stanley Whittingham
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (3): 231-231
标识
DOI:10.1149/ma2016-02/3/231
摘要

The field of Solid State Ionics was born with the discovery of fast ionic motion in a number of solids, in particular beta alumina in 1967 [1,2]. The challenge of measuring their ionic conductivity was achieved by using mixed ionic and electronic conducting materials such as Na x WO 3 and Li x V 2 O 5 [3]. It was not until the early 1970s that the critical role of intercalation in batteries was generally recognized. Before then it was thought that reduction of the cathode occurred by the abstraction of oxygen forming Li 2 O and a lower oxide, rather than the intercalation compound Li x V 2 O 5 or MnOOH in a lithium cell or the alkaline cell. [4,5] Exxon in 1972 mounted a corporate research effort in energy beyond petroleum and chemicals. Part of this effort was directed at superconductivity in intercalation reactions, and out of the effort, which was focused on TaS 2 came the relevation that significant energy could be stored in intercalation reactions. An effort on (Li,Na) x TiS 2 batteries began in 1972, and shortly thereafter a full development and subsequently manufacturing facility was set-up. TiS 2 was the preferred cathode of all the layered dichalcogenides because of its light weight and metallic conductivity, so no conducting binder was needed [6]. Large prismatic cells were demonstrated at the 1977 Electric Vehicle show in Chicago, and smaller coin cells were built for marketing purposes. These latter are still operational today, some 40 years later [7]. A challenge with the initial cells was the formation of dendritic lithium, and so pure lithium was not used in the commercial cells but rather a LiAl alloy [8], formed in situ by the reaction of lithium and aluminum foils. Similar lithium battery efforts on intercalation reactions (oxides, sulfides, and selenides) were underway at a number of companies in the 1970s, for example at Bell Labs and in start-ups in the Boston area and later at MoliEnergy in Vancouver. In the mid-1980s Exxon licensed the technology to a Japanese, a European and a US company. In the 1980s Bell Labs described the use of a carbon-based anode [9] and Oxford University described the cathodic behavior of the layered dioxide of cobalt [10]. SONY licensed both these technologies and developed them into the first commercially successful secondary lithium batteries in 1991 [11]. The history of the lithium battery has been well described by Fletcher in the book Bottle Lightening [12], and further in-depth science has been reviewed in Chem. Rev. [13]. [1]. Y. Y. Yao, J. T. Kummer, “Ion transport in beta alumina”, J. Inorg. Nucl. Chem. , 29, (1967) 2453. [2]. M. S. Whittingham, R. A. Huggins, “Beta Alumina - Prelude to a Revolution in Solid State Electrochemistry” NBS Special Publications 1972, 364, 139-154. [3] M. S. Whittingham, R. A. Huggins, “Measurement of Sodium Ion Transport in Beta Alumina Using Reversible Solid Electrodes” J. Chem. Phys., 54, (1971) 414. [4]. M. S. Whittingham, “The role of ternary phases in cathode reactions”, Journal of the Electrochemical Society , 123 (1976) 315-320. [5]. M. S. Whittingham “Electrical energy storage and intercalation chemistry”, Science , 192 (1976), 1126-1127. [6]. M. S. Whittingham, “Chemistry of Intercalation Compounds: Metal Guests in Chalcogenide Hosts”, Prog. Solid State Chem. , 12 (1978) 41-99. [7]. Nathalie Pereira, Glenn G. Amatucci, M. Stanley Whittingham, Robert Hamlen, “Lithiumtitanium disulfide rechargeable cell performance after 35 years of storage”, J. Power Sources , 280 (2015) 18-22. [8]. B. M. L. Rao, R. W. Francis, H. A. Christopher, “Lithium-Aluminum Electrode” J. Electrochem. Soc. , 124 (1977) 1490-1492. [9]. S. Basu, “Ambient temperature rechargeable battery”, US Patent 4,423,125 1982. [10]. K. Mitzushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, “Li x CoO 2 (O<x≤1): A New Cathode Material for Batteries of High Energy Density”, Mater. Res. Bull. 15, (1980) 783. [11]. Y. Nishi, in Lithium Ion Batteries; M. Wakihara, M., O. Yamamoto, Eds.; Kodansha: Tokyo, 1998. [12]. Seth Fletcher, “Bottled Lightening”, (2011) [13]. M. S. Whittingham, “Lithium Batteries and Cathode Materials”, Chem. Rev., 104 (2004) 4271.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dacito应助李大龙采纳,获得10
1秒前
anling发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
dengyingni发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
果粒橙发布了新的文献求助10
6秒前
吐丝麵包应助han采纳,获得10
6秒前
tangz完成签到,获得积分20
6秒前
负责灵萱发布了新的文献求助10
6秒前
炙热苠完成签到,获得积分10
6秒前
康康XY发布了新的文献求助30
7秒前
JIU夭发布了新的文献求助10
7秒前
Ava应助nana采纳,获得10
8秒前
研友_ng9v28发布了新的文献求助10
9秒前
桐桐应助2quan采纳,获得10
9秒前
Hello应助云中歌采纳,获得80
9秒前
JINX发布了新的文献求助10
9秒前
9秒前
ABBYTHU18完成签到,获得积分20
9秒前
马牛逼发布了新的文献求助10
9秒前
10秒前
史努比发布了新的文献求助10
10秒前
Orange应助猫的报恩采纳,获得30
11秒前
Sunnig盈完成签到,获得积分10
11秒前
领导范儿应助果砸采纳,获得10
11秒前
爆米花应助lanke1234采纳,获得10
11秒前
11秒前
WHB完成签到,获得积分10
11秒前
3dyf发布了新的文献求助10
12秒前
慕青应助wq采纳,获得10
12秒前
菠萝菠萝哒应助ZJ采纳,获得10
12秒前
陆陆完成签到,获得积分10
13秒前
13秒前
NVLEKU给NVLEKU的求助进行了留言
14秒前
li发布了新的文献求助10
15秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390769
求助须知:如何正确求助?哪些是违规求助? 3002173
关于积分的说明 8802231
捐赠科研通 2688779
什么是DOI,文献DOI怎么找? 1472739
科研通“疑难数据库(出版商)”最低求助积分说明 681152
邀请新用户注册赠送积分活动 673901