Forecasting nanoparticle toxicity using nonlinear predictive regressor learning systems

支持向量机 特征选择 计算机科学 机器学习 人工智能 毒性 非线性系统 细胞毒性 交叉验证 数学 化学 物理 生物化学 量子力学 有机化学 体外
作者
Nicola Toschi,Stefano Ciulli,Stefano Diciotti,Andrea Duggento,Maria Guerrisi,Andrea Magrini,Luisa Campagnolo,Antonio Pietroiusti
标识
DOI:10.1109/embc.2016.7590659
摘要

Nanoparticle (NP) toxicity is determined by a vast number of topological, sterical, physico-chemical as well as biological properties, rendering a priori evaluation of the effect of NP on biological tissue as arduous as it is necessary and urgent. We aimed at mining the HORIZON 2020 MODENA COST NP cytotoxicity database through nonlinear predictive regressor learning systems in order to assess the power of available NP descriptors and assay characteristics in predicting NP toxicity. Specifically, we assessed the results of cytotoxicity assays performed on 57 NP and trained two different nonlinear regressors (Support Vector Regressors [SVR] with polynomical kernels and Radial Basis Function [RBF] regressors) within a nested-cross validation scheme for parameter optimization to predict toxicity as quantified by EC25, EC50 and slope while using the regressional ReliefF algorithm (RReliefF) for feature selection. Available NP attributes were material, coating, cell type, dispersion protocol, shape, 1st and 2nd dimension, aspect ratio, surface area, zeta potential and size in situ. In most regressor learning systems, after feature selection with the RReliefF algorithm, the correlation between real and estimated toxicity endpoint values increased monotonically with the number of included features, reaching values above 0.90. The best performance was obtained with RBF regressors, and the most informative features in predicting toxicity endpoints were related to nanoparticle structure. These trends did not change significantly between toxicity endpoints. In conclusion, EC25, EC50 and slope can be predicted with high correlation using purely data-driven, machine learning methods in Adenosine triphosphate (ATP)-based NP cytotoxicity assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
yangya完成签到,获得积分10
2秒前
3秒前
趙途嘵生发布了新的文献求助10
4秒前
科研通AI5应助称心寒松采纳,获得10
4秒前
4秒前
flymouse完成签到,获得积分10
4秒前
wss发布了新的文献求助10
5秒前
6秒前
HH完成签到,获得积分10
6秒前
7秒前
7秒前
Purple发布了新的文献求助10
8秒前
wanci应助谦让的抽屉采纳,获得10
8秒前
9秒前
11秒前
簌落完成签到,获得积分10
11秒前
科研通AI5应助辛勤青亦采纳,获得20
12秒前
深情安青应助123采纳,获得10
13秒前
张育程发布了新的文献求助10
13秒前
14秒前
Purple完成签到,获得积分10
15秒前
thuuu完成签到,获得积分10
15秒前
zxvcbnm发布了新的文献求助10
15秒前
烟花应助彩色映雁采纳,获得10
16秒前
17秒前
橙子完成签到 ,获得积分10
17秒前
昏睡的蟠桃应助洛尘采纳,获得200
18秒前
李白白白完成签到,获得积分10
18秒前
夏末完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
23秒前
Nanpasen发布了新的文献求助10
23秒前
骆怀薇完成签到 ,获得积分10
24秒前
Wink14551发布了新的文献求助10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427