Enzyme Kinetics for Complex System Enables Accurate Determination of Specificity Constants of Numerous Substrates in a Mixture by Proteomics Platform

蛋白质组学 化学 基质(水族馆) 动力学 酶动力学 酶催化 生物系统 定量蛋白质组学 组合化学 色谱法 生物化学 活动站点 生物 生态学 基因 物理 量子力学
作者
Zhenzhen Deng,Jiawei Mao,Yan Wang,Hanfa Zou,Mingliang Ye
出处
期刊:Molecular & Cellular Proteomics [Elsevier]
卷期号:16 (1): 135-145 被引量:12
标识
DOI:10.1074/mcp.m116.062869
摘要

Many important experiments in proteomics including protein digestion, enzyme substrate screening, enzymatic labeling, etc., involve the enzymatic reactions in a complex system where numerous substrates coexists with an enzyme. However, the enzyme kinetics in such a system remains unexplored and poorly understood. Herein, we derived and validated the kinetics equations for the enzymatic reactions in complex system. We developed an iteration approach to depict the enzymatic reactions in complex system. It was validated by 630 time-course points from 24 enzymatic reaction experiments and was demonstrated to be a powerful tool to simulate the reactions in the complex system. By applying this approach, we found that the ratio of substrate depletion is independent of other coexisted substrates under specific condition. This observation was then validated by experiments. Based on this striking observation, a simplified model was developed to determine the catalytic efficiencies of numerous competing substrates presented in the complex enzyme reaction system. When coupled with high-throughput quantitative proteomics technique, this simplified model enabled the accurate determination of catalytic efficiencies for 2369 peptide substrates of a protease by using only one enzymatic reaction experiment. Thus, this study provided, in the first time, a validated model for the large scale determination of specificity constants which could enable the enzyme substrate screening approach turned from a qualitative method of identifying substrates to a quantitative method of identifying and prioritizing substrates. Data are available via ProteomeXchange with identifier PXD004665.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
君尧发布了新的文献求助10
1秒前
FashionBoy应助王宽宽宽采纳,获得10
1秒前
1秒前
科研通AI6应助王志新采纳,获得10
1秒前
2秒前
魏家乐完成签到,获得积分10
2秒前
wyuwqhjp发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
酷酷怀曼完成签到,获得积分10
3秒前
华仔应助QWE采纳,获得10
3秒前
li发布了新的文献求助10
3秒前
hezhuyou发布了新的文献求助10
3秒前
江山完成签到,获得积分10
3秒前
3秒前
4秒前
斯文败类应助安安采纳,获得10
5秒前
5秒前
6秒前
6秒前
娃娃菜妮发布了新的文献求助10
6秒前
orange发布了新的文献求助10
6秒前
7秒前
去玩儿发布了新的文献求助10
7秒前
哈哈哈哈完成签到,获得积分10
7秒前
滕可燕完成签到,获得积分10
7秒前
8秒前
小蘑菇应助刚国忠采纳,获得10
8秒前
mylove应助Sid采纳,获得10
9秒前
承乐发布了新的文献求助30
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
王宽宽宽完成签到,获得积分10
11秒前
11秒前
科研通AI6应助13nnk采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836