Multi-scale gradual integration CNN for false positive reduction in pulmonary nodule detection

假阳性悖论 计算机科学 卷积神经网络 Python(编程语言) 模式识别(心理学) 人工智能 结核(地质) 假阳性率 边距(机器学习) 特征(语言学) 机器学习 生物 古生物学 操作系统 语言学 哲学
作者
Bum-Chae Kim,Jee Seok Yoon,Jun-Sik Choi,Heung‐Il Suk
出处
期刊:Neural Networks [Elsevier]
卷期号:115: 1-10 被引量:72
标识
DOI:10.1016/j.neunet.2019.03.003
摘要

Lung cancer is a global and dangerous disease, and its early detection is crucial for reducing the risks of mortality. In this regard, it has been of great interest in developing a computer-aided system for pulmonary nodules detection as early as possible on thoracic CT scans. In general, a nodule detection system involves two steps: (i) candidate nodule detection at a high sensitivity, which captures many false positives and (ii) false positive reduction from candidates. However, due to the high variation of nodule morphological characteristics and the possibility of mistaking them for neighboring organs, candidate nodule detection remains a challenge. In this study, we propose a novel Multi-scale Gradual Integration Convolutional Neural Network (MGI-CNN), designed with three main strategies: (1) to use multi-scale inputs with different levels of contextual information, (2) to use abstract information inherent in different input scales with gradual integration, and (3) to learn multi-stream feature integration in an end-to-end manner. To verify the efficacy of the proposed network, we conducted exhaustive experiments on the LUNA16 challenge datasets by comparing the performance of the proposed method with state-of-the-art methods in the literature. On two candidate subsets of the LUNA16 dataset, i.e., V1 and V2, our method achieved an average CPM of 0.908 (V1) and 0.942 (V2), outperforming comparable methods by a large margin. Our MGI-CNN is implemented in Python using TensorFlow and the source code is available from https://github.com/ku-milab/MGICNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助魔幻乘云采纳,获得10
刚刚
CZJ完成签到,获得积分10
1秒前
2秒前
隐形曼青应助1234采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
5秒前
吱嗷完成签到,获得积分20
6秒前
小粥发布了新的文献求助10
6秒前
满意外套完成签到,获得积分10
6秒前
7秒前
gousheng666完成签到,获得积分10
8秒前
昏睡的雨竹完成签到,获得积分10
8秒前
9秒前
9秒前
不安的墨镜完成签到,获得积分10
9秒前
欣喜从波发布了新的文献求助10
10秒前
11秒前
Bsisoy发布了新的文献求助10
11秒前
明亮不弱完成签到 ,获得积分10
12秒前
成就的沛菡完成签到 ,获得积分10
12秒前
魔幻乘云发布了新的文献求助10
14秒前
1233445发布了新的文献求助10
15秒前
米子哈发布了新的文献求助10
15秒前
hxy发布了新的文献求助10
15秒前
15秒前
Shelby完成签到,获得积分10
16秒前
16秒前
无敌猫饭发布了新的文献求助10
16秒前
MrSong完成签到,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
香蕉觅云应助沉默的惜芹采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
Jared应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788