Multi-scale gradual integration CNN for false positive reduction in pulmonary nodule detection

假阳性悖论 计算机科学 卷积神经网络 Python(编程语言) 模式识别(心理学) 人工智能 结核(地质) 假阳性率 边距(机器学习) 特征(语言学) 机器学习 生物 语言学 操作系统 哲学 古生物学
作者
Bum-Chae Kim,Jee Seok Yoon,Jun-Sik Choi,Heung‐Il Suk
出处
期刊:Neural Networks [Elsevier BV]
卷期号:115: 1-10 被引量:72
标识
DOI:10.1016/j.neunet.2019.03.003
摘要

Lung cancer is a global and dangerous disease, and its early detection is crucial for reducing the risks of mortality. In this regard, it has been of great interest in developing a computer-aided system for pulmonary nodules detection as early as possible on thoracic CT scans. In general, a nodule detection system involves two steps: (i) candidate nodule detection at a high sensitivity, which captures many false positives and (ii) false positive reduction from candidates. However, due to the high variation of nodule morphological characteristics and the possibility of mistaking them for neighboring organs, candidate nodule detection remains a challenge. In this study, we propose a novel Multi-scale Gradual Integration Convolutional Neural Network (MGI-CNN), designed with three main strategies: (1) to use multi-scale inputs with different levels of contextual information, (2) to use abstract information inherent in different input scales with gradual integration, and (3) to learn multi-stream feature integration in an end-to-end manner. To verify the efficacy of the proposed network, we conducted exhaustive experiments on the LUNA16 challenge datasets by comparing the performance of the proposed method with state-of-the-art methods in the literature. On two candidate subsets of the LUNA16 dataset, i.e., V1 and V2, our method achieved an average CPM of 0.908 (V1) and 0.942 (V2), outperforming comparable methods by a large margin. Our MGI-CNN is implemented in Python using TensorFlow and the source code is available from https://github.com/ku-milab/MGICNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkk完成签到,获得积分10
1秒前
2秒前
2秒前
flysky120发布了新的文献求助100
2秒前
songflower完成签到,获得积分10
2秒前
3秒前
123456发布了新的文献求助10
4秒前
打打应助迷人的语山采纳,获得10
4秒前
4秒前
Notdodead发布了新的文献求助30
5秒前
情怀应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
时尚的秋天完成签到 ,获得积分10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
彭于彦祖应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
柯一一应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
随缘发布了新的文献求助10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
兜兜完成签到,获得积分20
7秒前
拔丝香芋发布了新的文献求助30
7秒前
LLL完成签到,获得积分10
9秒前
10秒前
xjh完成签到,获得积分10
10秒前
11秒前
文静静静完成签到 ,获得积分10
12秒前
123456完成签到,获得积分10
14秒前
苗苗发布了新的文献求助10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432