Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts

还原论 合理设计 催化作用 Atom(片上系统) 计算化学 生化工程 材料科学 组合化学 化学 纳米技术 有机化学 认识论 计算机科学 哲学 工程类 嵌入式系统
作者
Georgios Giannakakis,Maria Flytzani‐Stephanopoulos,E. Charles H. Sykes
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (1): 237-247 被引量:330
标识
DOI:10.1021/acs.accounts.8b00490
摘要

Heterogeneous catalysts are workhorses in the industrial production of most commodity and specialty chemicals, and have widespread energy and environmental applications, with the annual market value of the catalysts themselves reaching almost $20 billion in 2018. These catalysts are complex, comprising multicomponent materials and multiple structures, making their rational design challenging, if not impossible. Furthermore, typical active metals like Pt, Pd, and Rh are expensive and can be susceptible to poisoning by CO, coking, and they are not always 100% selective. Efforts to use these elements sparingly and improve their selectivity has led to recent identification of single-atom heterogeneous catalysts in which individual transition metal atoms anchored on oxide or carbon-based supports are excellent catalysts for reactions like the CO oxidation, water-gas shift, alcohol dehydrogenation, and steam reforming. In this Account, we describe a new class of single-atom heterogeneous catalysts, namely, Single-Atom Alloys (SAAs) that comprise catalytically active elements like Pt, Pd, and Ni alloyed in more inert host metals at the single-atom limit. These materials evolved by complementary surface science and scanning probe studies using single crystals, and catalytic evaluation of the corresponding alloy nanoparticles with compositions informed by the surface science findings. The well-defined nature of the active sites in SAAs makes accurate modeling with theory relatively easy, enabling the rational design of SAA catalysts via a complementary three-prong approach, encompassing surface science model catalysts, theory, and real catalyst synthesis and testing under industrially relevant conditions. SAAs constitute one of just a few examples of when heterogeneous catalyst design has been guided by an understanding of fundamental surface processes. The Account starts by describing scanning tunneling microscopy studies of highly dilute alloys formed by doping small amounts of a catalytically active element into a more inert host metal. We first discuss hydrogenation reactions in which dissociation of H2 is often rate limiting. Results indicate how the SAA geometry allows the transition state and the binding site of the reaction intermediates to be decoupled, which enables both facile dissociation of reactants and weak binding of intermediates, two key factors for efficient and selective catalysis. These results were exploited to design the first PtCu SAA hydrogenation catalysts which showed high selectivity, stability and resistance to poisoning in industrially relevant hydrogenation reactions, such as the selective conversion of butadiene to butenes. Model studies also revealed spillover of hydrogen atoms from the Pt site where dissociation of H2 occurs to Cu sites where selective hydrogenation is facilitated in a bifunctional manner. We then discuss selective dehydrogenations on SAAs demonstrating that they enable efficient C-H activation, while being resistant to coking that plagues typical Pt catalysts. SAA PtCu nanoparticle catalysts showed excellent stability in butane dehydrogenation for days-on-stream at 400 °C. Another advantage of SAA catalysts is that on many alloy combinations CO, a common catalyst poison, binds more weakly to the alloy than the pure metal. We conclude by discussing recent theory results that predict the energetics of many key reaction steps on a wide range of SAAs and the exciting possibilities this reductionist approach to heterogeneous catalysis offers for the rational design of new catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜大虫完成签到,获得积分10
刚刚
害羞聋五发布了新的文献求助10
1秒前
prosperp完成签到,获得积分0
1秒前
Hongsong完成签到,获得积分20
1秒前
prosperp应助背侧丘脑采纳,获得10
2秒前
好好发布了新的文献求助10
2秒前
gaos发布了新的文献求助10
2秒前
einuo发布了新的文献求助10
3秒前
001完成签到,获得积分20
3秒前
李健应助阔达萧采纳,获得10
3秒前
陆离发布了新的文献求助10
3秒前
4秒前
66应助雪白红紫采纳,获得10
4秒前
英俊的铭应助东郭南松采纳,获得10
4秒前
YANG完成签到 ,获得积分10
5秒前
冷酷哈密瓜完成签到,获得积分10
6秒前
岁月流年完成签到,获得积分10
6秒前
6秒前
7秒前
8个老登发布了新的文献求助10
8秒前
douzi完成签到,获得积分10
8秒前
Li完成签到,获得积分10
8秒前
Macaco完成签到,获得积分10
9秒前
研友_8Yo3dn完成签到,获得积分10
9秒前
lilac完成签到,获得积分10
9秒前
misalia发布了新的文献求助10
9秒前
judy发布了新的文献求助10
9秒前
10秒前
李健的小迷弟应助称心铭采纳,获得30
10秒前
10秒前
adfadf发布了新的文献求助10
10秒前
CC完成签到,获得积分10
10秒前
1234567890完成签到,获得积分10
10秒前
彩色夏波发布了新的文献求助10
11秒前
劲秉应助跳舞的俏皮采纳,获得20
11秒前
11秒前
wy.he完成签到,获得积分0
12秒前
小林太郎应助小磊采纳,获得20
12秒前
QinMengyao完成签到,获得积分10
12秒前
hhh完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678