托普利兹矩阵
算法
阿诺迪迭代法
指数函数
数学
数值分析
基质(化学分析)
产品(数学)
计算机科学
应用数学
广义最小残差法
迭代法
数学分析
纯数学
几何学
复合材料
材料科学
标识
DOI:10.1016/j.amc.2018.12.021
摘要
The shift and invert Arnoldi (SIA) method is a numerical algorithm for approximating the product of Toeplitz matrix exponential with a vector. In this paper, we extend the SIA method to chemical master equation (CME) and propose a SIA algorithm based on the strategy of reorthogonalization (SIRA). We establish a theoretical error of the resulting approximation of SIRA algorithm. Numerical experiments show that the SIRA algorithm is more efficient than the Krylov FSP algorithm in terms of finite models, and the error estimate can be used to determine whether this result obtained by SIRA algorithm is acceptable or not.
科研通智能强力驱动
Strongly Powered by AbleSci AI