清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dirichlet-multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data

多项式分布 计算机科学 微生物群 计数数据 统计 Dirichlet分布 推论 潜在Dirichlet分配
作者
Joshua G. Harrison,W. John Calder,Vivaswat Shastry,C. Alex Buerkle
出处
期刊:bioRxiv 卷期号:: 711317- 被引量:1
标识
DOI:10.1101/711317
摘要

Abstract Molecular ecology regularly requires the analysis of count data that reflect the relative abundance of features of a composition (e.g., taxa in a community, gene transcripts in a tissue). The sampling process that generates these data can be modeled using the multinomial distribution. Replicate multinomial samples inform the relative abundances of features in an underlying Dirichlet distribution. These distributions together form a hierarchical model for relative abundances among replicates and sampling groups. This type of Dirichlet-multinomial modelling (DMM) has been described previously, but its benefits and limitations are largely untested. With simulated data, we quantified the ability of DMM to detect differences in proportions between treatment and control groups, and compared the efficiency of three computational methods to implement DMM—Hamiltonian Monte Carlo (HMC), variational inference (VI), and Gibbs Markov chain Monte Carlo. We report that DMM was better able to detect shifts in relative abundances than analogous analytical tools, while identifying an acceptably low number of false positives. Among methods for implementing DMM, HMC provided the most accurate estimates of relative abundances, and VI was the most computationally efficient. The sensitivity of DMM was exemplified through analysis of previously published data describing lung microbiomes. We report that DMM identified several potentially pathogenic, bacterial taxa as more abundant in the lungs of children who aspirated foreign material during swallowing; these differences went undetected with different statistical approaches. Our results suggest that DMM has strong potential as a statistical method to guide inference in molecular ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rn完成签到 ,获得积分10
30秒前
Wang完成签到 ,获得积分20
43秒前
高高代珊完成签到 ,获得积分10
1分钟前
小young完成签到 ,获得积分10
1分钟前
k sir完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
huanghe完成签到,获得积分10
2分钟前
开放的麦片完成签到,获得积分10
2分钟前
3分钟前
庄冬丽发布了新的文献求助10
4分钟前
庄冬丽完成签到,获得积分10
4分钟前
bkagyin应助庄冬丽采纳,获得10
4分钟前
4分钟前
葛力发布了新的文献求助10
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
clairevox应助葛力采纳,获得100
5分钟前
拼搏问薇完成签到 ,获得积分10
5分钟前
李成恩完成签到 ,获得积分10
5分钟前
谨慎鹏涛完成签到 ,获得积分10
6分钟前
宇文非笑完成签到 ,获得积分10
6分钟前
VDC应助科研通管家采纳,获得30
6分钟前
VDC应助科研通管家采纳,获得30
6分钟前
VDC应助科研通管家采纳,获得30
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
Jasper应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228146
关于积分的说明 9778630
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003