Dirichlet-multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data

多项式分布 计算机科学 微生物群 计数数据 统计 Dirichlet分布 推论 潜在Dirichlet分配
作者
Joshua G. Harrison,W. John Calder,Vivaswat Shastry,C. Alex Buerkle
出处
期刊:bioRxiv 卷期号:: 711317- 被引量:1
标识
DOI:10.1101/711317
摘要

Abstract Molecular ecology regularly requires the analysis of count data that reflect the relative abundance of features of a composition (e.g., taxa in a community, gene transcripts in a tissue). The sampling process that generates these data can be modeled using the multinomial distribution. Replicate multinomial samples inform the relative abundances of features in an underlying Dirichlet distribution. These distributions together form a hierarchical model for relative abundances among replicates and sampling groups. This type of Dirichlet-multinomial modelling (DMM) has been described previously, but its benefits and limitations are largely untested. With simulated data, we quantified the ability of DMM to detect differences in proportions between treatment and control groups, and compared the efficiency of three computational methods to implement DMM—Hamiltonian Monte Carlo (HMC), variational inference (VI), and Gibbs Markov chain Monte Carlo. We report that DMM was better able to detect shifts in relative abundances than analogous analytical tools, while identifying an acceptably low number of false positives. Among methods for implementing DMM, HMC provided the most accurate estimates of relative abundances, and VI was the most computationally efficient. The sensitivity of DMM was exemplified through analysis of previously published data describing lung microbiomes. We report that DMM identified several potentially pathogenic, bacterial taxa as more abundant in the lungs of children who aspirated foreign material during swallowing; these differences went undetected with different statistical approaches. Our results suggest that DMM has strong potential as a statistical method to guide inference in molecular ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助小熊采纳,获得10
刚刚
冷艳的小懒虫完成签到 ,获得积分10
刚刚
Lucas应助松松采纳,获得20
3秒前
hhj完成签到,获得积分20
4秒前
xu完成签到 ,获得积分10
4秒前
9秒前
轨迹给轨迹的求助进行了留言
11秒前
卜念发布了新的文献求助10
15秒前
糟糕的富应助郝宝真采纳,获得10
15秒前
16秒前
16秒前
勿庸完成签到,获得积分10
19秒前
甄道之发布了新的文献求助10
20秒前
安详初蓝发布了新的文献求助50
20秒前
21秒前
hxb完成签到,获得积分10
22秒前
憨憨完成签到 ,获得积分20
22秒前
李健应助晶晶妹妹采纳,获得10
23秒前
yk完成签到 ,获得积分10
25秒前
满意的柏柳完成签到,获得积分10
25秒前
25秒前
王提发布了新的文献求助30
27秒前
杨好圆完成签到,获得积分10
27秒前
细心天德完成签到 ,获得积分10
29秒前
YYY666完成签到,获得积分10
29秒前
一二三木偶人完成签到,获得积分10
30秒前
31秒前
31秒前
稀罕你发布了新的文献求助10
31秒前
Ran完成签到,获得积分10
32秒前
32秒前
xianyu完成签到,获得积分20
32秒前
失眠墨镜完成签到,获得积分10
32秒前
Harry应助科研通管家采纳,获得20
33秒前
CipherSage应助科研通管家采纳,获得10
33秒前
陈雷应助科研通管家采纳,获得200
33秒前
领导范儿应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187