Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors

材料科学 电解质 超级电容器 自愈水凝胶 纳米技术 电极 电化学 复合材料 高分子化学 物理化学 化学
作者
Lvye Fang,Zefan Cai,Zhengqing Ding,Tianyi Chen,Jiacheng Zhang,Fubin Chen,Jiayan Shen,Fan Chen,Rui Li,Feng Zhou,Zhuang Xie
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (24): 21895-21903 被引量:88
标识
DOI:10.1021/acsami.9b03410
摘要

Double-network tough hydrogels have raised increasing interest in stretchable electronic applications as well as electronic skin (e-skin) owing to their excellent mechanical properties and functionalities. While hydrogels have been extensively explored as solid-state electrolytes, stretchable energy storage devices based on tough hydrogel electrolytes are still limited despite their high stretchability and strength. A key challenge remains in the robust electrode/electrolyte interface under large mechanical strains. Inspired by the skin structure that involves the microstructured interface for the tight connection between the dermis and epidermis, we demonstrated that a surface-microstructured tough hydrogel electrolyte composed of agar/polyacrylamide/LiCl (AG/PAAm/LiCl) could be exploited to allow stretchable supercapacitors with enhanced mechanical and electrochemical performance. The prestretched tough hydrogel electrolyte was treated to generate surface microstructures with a roughness of tens of micrometers simply via mechanical rubbing followed by the attachment of activated carbon electrodes on both sides to realize the fabrication of the stretchable supercapacitor. Through investigating the properties of the tough hydrogel electrolyte and the electrochemical performance of the as-fabricated supercapacitors under varied strains, the surface-microstructured hydrogel electrolyte was shown to enable robust adhesion to electrodes, improving electrochemical behavior and capacitance, as well as having better performance retention under repeated stretching cycles, which surpassed the pristine hydrogel with smooth surfaces. Our approach could provide an alternative and general strategy to improve the interfacial properties between the electrode and the hydrogel electrolyte, driving new directions for functional stretchable devices based on tough hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山丘完成签到,获得积分10
1秒前
考研小白完成签到,获得积分10
1秒前
丘比特应助超帅听枫采纳,获得10
1秒前
1秒前
ezreal完成签到,获得积分10
1秒前
坦率斑马完成签到,获得积分10
1秒前
2秒前
卫子萌完成签到,获得积分10
2秒前
anny2022发布了新的文献求助10
2秒前
脑洞疼应助zzrg采纳,获得10
2秒前
2秒前
2秒前
乐观啤酒完成签到,获得积分10
3秒前
SSSstriker完成签到,获得积分10
3秒前
jjdgangan完成签到,获得积分10
4秒前
4秒前
shuzi完成签到,获得积分10
4秒前
xopla完成签到,获得积分10
4秒前
zhaoliang完成签到,获得积分20
5秒前
36456657发布了新的文献求助10
5秒前
利多卡因完成签到,获得积分10
6秒前
柒八染发布了新的文献求助10
6秒前
6秒前
自由凌雪完成签到 ,获得积分10
6秒前
Silieze完成签到,获得积分10
7秒前
Gyt.完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
ajiu发布了新的文献求助10
9秒前
YoroYoshi完成签到,获得积分10
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
爱撒娇的手套完成签到,获得积分10
10秒前
10秒前
nani完成签到,获得积分10
11秒前
jjb发布了新的文献求助10
11秒前
12秒前
zhao完成签到,获得积分10
12秒前
12秒前
霸气的yan完成签到 ,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666988
求助须知:如何正确求助?哪些是违规求助? 3225771
关于积分的说明 9765484
捐赠科研通 2935617
什么是DOI,文献DOI怎么找? 1607829
邀请新用户注册赠送积分活动 759374
科研通“疑难数据库(出版商)”最低求助积分说明 735302