Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors

材料科学 电解质 超级电容器 自愈水凝胶 纳米技术 电极 电化学 复合材料 高分子化学 物理化学 化学
作者
Lvye Fang,Zefan Cai,Zhengqing Ding,Tianyi Chen,Jiacheng Zhang,Fubin Chen,Jiayan Shen,Fan Chen,Rui Li,Feng Zhou,Zhuang Xie
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (24): 21895-21903 被引量:88
标识
DOI:10.1021/acsami.9b03410
摘要

Double-network tough hydrogels have raised increasing interest in stretchable electronic applications as well as electronic skin (e-skin) owing to their excellent mechanical properties and functionalities. While hydrogels have been extensively explored as solid-state electrolytes, stretchable energy storage devices based on tough hydrogel electrolytes are still limited despite their high stretchability and strength. A key challenge remains in the robust electrode/electrolyte interface under large mechanical strains. Inspired by the skin structure that involves the microstructured interface for the tight connection between the dermis and epidermis, we demonstrated that a surface-microstructured tough hydrogel electrolyte composed of agar/polyacrylamide/LiCl (AG/PAAm/LiCl) could be exploited to allow stretchable supercapacitors with enhanced mechanical and electrochemical performance. The prestretched tough hydrogel electrolyte was treated to generate surface microstructures with a roughness of tens of micrometers simply via mechanical rubbing followed by the attachment of activated carbon electrodes on both sides to realize the fabrication of the stretchable supercapacitor. Through investigating the properties of the tough hydrogel electrolyte and the electrochemical performance of the as-fabricated supercapacitors under varied strains, the surface-microstructured hydrogel electrolyte was shown to enable robust adhesion to electrodes, improving electrochemical behavior and capacitance, as well as having better performance retention under repeated stretching cycles, which surpassed the pristine hydrogel with smooth surfaces. Our approach could provide an alternative and general strategy to improve the interfacial properties between the electrode and the hydrogel electrolyte, driving new directions for functional stretchable devices based on tough hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研路上互帮互助,共同进步完成签到 ,获得积分10
刚刚
桐桐应助暴躁的咖啡采纳,获得10
刚刚
杨洋完成签到,获得积分10
1秒前
4秒前
Wilson完成签到,获得积分10
5秒前
niuniu完成签到,获得积分10
6秒前
小蘑菇应助123采纳,获得10
8秒前
咕噜完成签到,获得积分10
8秒前
幸福娃娃发布了新的文献求助10
9秒前
9秒前
10秒前
积极慕梅应助皮皮采纳,获得10
10秒前
10秒前
Sisi Lee完成签到,获得积分10
11秒前
言余应助光亮小蚂蚁采纳,获得100
11秒前
会飞的鱼发布了新的文献求助10
12秒前
胡桃夹馍发布了新的文献求助10
12秒前
希望天下0贩的0应助yyymmma采纳,获得10
13秒前
老老实实好好活着完成签到,获得积分10
13秒前
aaaaafine发布了新的文献求助10
15秒前
AAA111122完成签到,获得积分10
15秒前
15秒前
咕噜发布了新的文献求助10
16秒前
赘婿应助年华采纳,获得10
18秒前
19秒前
李杰发布了新的文献求助10
20秒前
困敦发布了新的文献求助10
20秒前
gentledragon完成签到,获得积分10
20秒前
材料小刘鸭完成签到,获得积分10
20秒前
着急的向雁完成签到,获得积分10
20秒前
Jiayee发布了新的文献求助20
20秒前
21秒前
孙梦涵完成签到,获得积分10
22秒前
23秒前
Lucas应助Yuciyy采纳,获得10
23秒前
aaaaafine完成签到,获得积分10
24秒前
阿波罗完成签到,获得积分10
24秒前
叶子离不开风完成签到,获得积分20
24秒前
yyymmma完成签到,获得积分10
24秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792465
关于积分的说明 7802933
捐赠科研通 2448664
什么是DOI,文献DOI怎么找? 1302761
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237