Semantic Relationships Guided Representation Learning for Facial Action Unit Recognition

计算机科学 人工智能 特征学习 图形 特征(语言学) 代表(政治) 模式识别(心理学) 机器学习 自然语言处理 理论计算机科学 政治学 语言学 政治 哲学 法学
作者
Guanbin Li,Xin Zhu,Yirui Zeng,Qing Wang,Liang Lin
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:33 (01): 8594-8601 被引量:126
标识
DOI:10.1609/aaai.v33i01.33018594
摘要

Facial action unit (AU) recognition is a crucial task for facial expressions analysis and has attracted extensive attention in the field of artificial intelligence and computer vision. Existing works have either focused on designing or learning complex regional feature representations, or delved into various types of AU relationship modeling. Albeit with varying degrees of progress, it is still arduous for existing methods to handle complex situations. In this paper, we investigate how to integrate the semantic relationship propagation between AUs in a deep neural network framework to enhance the feature representation of facial regions, and propose an AU semantic relationship embedded representation learning (SRERL) framework. Specifically, by analyzing the symbiosis and mutual exclusion of AUs in various facial expressions, we organize the facial AUs in the form of structured knowledge-graph and integrate a Gated Graph Neural Network (GGNN) in a multi-scale CNN framework to propagate node information through the graph for generating enhanced AU representation. As the learned feature involves both the appearance characteristics and the AU relationship reasoning, the proposed model is more robust and can cope with more challenging cases, e.g., illumination change and partial occlusion. Extensive experiments on the two public benchmarks demonstrate that our method outperforms the previous work and achieves state of the art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mumu发布了新的文献求助10
1秒前
阿枫完成签到,获得积分10
2秒前
2秒前
Siri烤布蕾完成签到,获得积分10
2秒前
3秒前
4秒前
王建平完成签到 ,获得积分10
4秒前
所所应助ruby采纳,获得10
4秒前
4秒前
樱桃猴子应助小陈加油呀采纳,获得10
5秒前
万能图书馆应助wangxu采纳,获得10
5秒前
123应助医学僧采纳,获得10
6秒前
旧城以西发布了新的文献求助10
6秒前
7秒前
所所应助着急的友绿采纳,获得10
7秒前
孙友浩发布了新的文献求助10
8秒前
8秒前
8秒前
SciGPT应助angew2000采纳,获得10
8秒前
9秒前
bing发布了新的文献求助10
9秒前
小玉发布了新的文献求助10
9秒前
36456657应助腾龙剑影采纳,获得50
10秒前
10秒前
jkxi发布了新的文献求助10
10秒前
夏洛完成签到,获得积分10
11秒前
12秒前
12秒前
机智的傲白应助shimingsam采纳,获得20
13秒前
khurram发布了新的文献求助10
13秒前
13秒前
13秒前
Pan完成签到,获得积分10
14秒前
团装完成签到 ,获得积分10
14秒前
余南发布了新的文献求助10
14秒前
15秒前
丁丁丁完成签到,获得积分10
15秒前
羽翼发布了新的文献求助10
15秒前
领导范儿应助孙友浩采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236