Semantic Relationships Guided Representation Learning for Facial Action Unit Recognition

计算机科学 人工智能 特征学习 图形 特征(语言学) 代表(政治) 模式识别(心理学) 机器学习 自然语言处理 理论计算机科学 政治学 语言学 政治 哲学 法学
作者
Guanbin Li,Xin Zhu,Yirui Zeng,Qing Wang,Liang Lin
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:33 (01): 8594-8601 被引量:126
标识
DOI:10.1609/aaai.v33i01.33018594
摘要

Facial action unit (AU) recognition is a crucial task for facial expressions analysis and has attracted extensive attention in the field of artificial intelligence and computer vision. Existing works have either focused on designing or learning complex regional feature representations, or delved into various types of AU relationship modeling. Albeit with varying degrees of progress, it is still arduous for existing methods to handle complex situations. In this paper, we investigate how to integrate the semantic relationship propagation between AUs in a deep neural network framework to enhance the feature representation of facial regions, and propose an AU semantic relationship embedded representation learning (SRERL) framework. Specifically, by analyzing the symbiosis and mutual exclusion of AUs in various facial expressions, we organize the facial AUs in the form of structured knowledge-graph and integrate a Gated Graph Neural Network (GGNN) in a multi-scale CNN framework to propagate node information through the graph for generating enhanced AU representation. As the learned feature involves both the appearance characteristics and the AU relationship reasoning, the proposed model is more robust and can cope with more challenging cases, e.g., illumination change and partial occlusion. Extensive experiments on the two public benchmarks demonstrate that our method outperforms the previous work and achieves state of the art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gurlstrian完成签到,获得积分10
刚刚
Migrol完成签到,获得积分10
刚刚
悄悄完成签到 ,获得积分10
刚刚
miao完成签到,获得积分10
1秒前
研友_VZG7GZ应助花痴的谷雪采纳,获得10
1秒前
sclai完成签到,获得积分10
1秒前
苹果河马完成签到,获得积分10
1秒前
哈哈发布了新的文献求助10
1秒前
江中发布了新的文献求助10
1秒前
Orange应助Shawn_张晨采纳,获得20
1秒前
幽默鱼完成签到,获得积分10
1秒前
小鱼完成签到,获得积分10
2秒前
无花果应助希特勒采纳,获得10
2秒前
2秒前
2秒前
NFC完成签到 ,获得积分10
2秒前
滴滴滴完成签到,获得积分10
2秒前
LC2228完成签到,获得积分10
2秒前
旅途发布了新的文献求助10
2秒前
OIC完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
kkkkkkk完成签到,获得积分10
3秒前
活力大厦B发布了新的文献求助50
4秒前
ZephyrZY完成签到,获得积分10
4秒前
fanlin完成签到,获得积分0
4秒前
半农发布了新的文献求助50
4秒前
健康的小鸽子完成签到 ,获得积分10
4秒前
Egoist完成签到,获得积分0
5秒前
啦啦啦完成签到,获得积分10
5秒前
5秒前
马嘉祺发布了新的文献求助10
5秒前
瑞仔完成签到,获得积分10
5秒前
6秒前
6秒前
冷酷的问晴完成签到,获得积分10
6秒前
6秒前
yongjiang应助uncle采纳,获得10
7秒前
马某发布了新的文献求助10
7秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585217
求助须知:如何正确求助?哪些是违规求助? 4669042
关于积分的说明 14774554
捐赠科研通 4617220
什么是DOI,文献DOI怎么找? 2530423
邀请新用户注册赠送积分活动 1499182
关于科研通互助平台的介绍 1467659