已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with dynamic GAN

过度拟合 计算机科学 极限学习机 人工智能 机器学习 数据挖掘 特征(语言学) 模式识别(心理学) 主成分分析 人工神经网络 语言学 哲学
作者
Liyuan Zhang,Huamin Yang,Zhengang Jiang
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:17 (1) 被引量:34
标识
DOI:10.1186/s12938-018-0604-3
摘要

Imbalanced data classification is an inevitable problem in medical intelligent diagnosis. Most of real-world biomedical datasets are usually along with limited samples and high-dimensional feature. This seriously affects the classification performance of the model and causes erroneous guidance for the diagnosis of diseases. Exploring an effective classification method for imbalanced and limited biomedical dataset is a challenging task. In this paper, we propose a novel multilayer extreme learning machine (ELM) classification model combined with dynamic generative adversarial net (GAN) to tackle limited and imbalanced biomedical data. Firstly, principal component analysis is utilized to remove irrelevant and redundant features. Meanwhile, more meaningful pathological features are extracted. After that, dynamic GAN is designed to generate the realistic-looking minority class samples, thereby balancing the class distribution and avoiding overfitting effectively. Finally, a self-adaptive multilayer ELM is proposed to classify the balanced dataset. The analytic expression for the numbers of hidden layer and node is determined by quantitatively establishing the relationship between the change of imbalance ratio and the hyper-parameters of the model. Reducing interactive parameters adjustment makes the classification model more robust. To evaluate the classification performance of the proposed method, numerical experiments are conducted on four real-world biomedical datasets. The proposed method can generate authentic minority class samples and self-adaptively select the optimal parameters of learning model. By comparing with W-ELM, SMOTE-ELM, and H-ELM methods, the quantitative experimental results demonstrate that our method can achieve better classification performance and higher computational efficiency in terms of ROC, AUC, G-mean, and F-measure metrics. Our study provides an effective solution for imbalanced biomedical data classification under the condition of limited samples and high-dimensional feature. The proposed method could offer a theoretical basis for computer-aided diagnosis. It has the potential to be applied in biomedical clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑米粥发布了新的文献求助10
1秒前
1秒前
852应助yyyyxxxg采纳,获得10
3秒前
6秒前
8秒前
9秒前
meditator完成签到,获得积分10
11秒前
zhr发布了新的文献求助10
11秒前
日出发布了新的文献求助10
12秒前
SciGPT应助skittles采纳,获得10
12秒前
科研通AI2S应助日出采纳,获得10
16秒前
微笑的语芙完成签到,获得积分10
16秒前
所所应助HJJHJH采纳,获得10
16秒前
16秒前
小开完成签到,获得积分10
19秒前
19秒前
辛勤果汁发布了新的文献求助10
21秒前
22秒前
songjing发布了新的文献求助10
25秒前
我是老大应助殷勤的斓采纳,获得10
25秒前
25秒前
方方发布了新的文献求助10
26秒前
科研通AI5应助张云清采纳,获得10
28秒前
28秒前
情怀应助study采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
非而者厚应助科研通管家采纳,获得20
30秒前
科研通AI5应助科研通管家采纳,获得30
31秒前
非而者厚应助科研通管家采纳,获得20
31秒前
科研通AI5应助绝绝子采纳,获得10
31秒前
非而者厚应助科研通管家采纳,获得20
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
31秒前
Y_应助yyyyxxxg采纳,获得10
31秒前
陈小花发布了新的文献求助10
31秒前
喂喂喂完成签到,获得积分10
33秒前
tomato发布了新的文献求助10
34秒前
34秒前
桃子发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745872
求助须知:如何正确求助?哪些是违规求助? 3288812
关于积分的说明 10060856
捐赠科研通 3005019
什么是DOI,文献DOI怎么找? 1650010
邀请新用户注册赠送积分活动 785727
科研通“疑难数据库(出版商)”最低求助积分说明 751222