预言
滚动轴承
可靠性工程
方位(导航)
振动
核(代数)
支持向量机
趋同(经济学)
状态监测
可靠性(半导体)
计算机科学
工程类
机器学习
人工智能
数学
物理
经济
功率(物理)
电气工程
组合数学
量子力学
经济增长
作者
Biao Wang,Yaguo Lei,Naipeng Li,Ningbo Li
出处
期刊:IEEE Transactions on Reliability
[Institute of Electrical and Electronics Engineers]
日期:2018-12-14
卷期号:69 (1): 401-412
被引量:1120
标识
DOI:10.1109/tr.2018.2882682
摘要
Remaining useful life (RUL) prediction of rolling element bearings plays a pivotal role in reducing costly unplanned maintenance and increasing the reliability, availability, and safety of machines. This paper proposes a hybrid prognostics approach for RUL prediction of rolling element bearings. First, degradation data of bearings are sparsely represented using relevance vector machine regressions with different kernel parameters. Then, exponential degradation models coupled with the Fréchet distance are employed to estimate the RUL adaptively. The proposed approach is evaluated using the vibration data from accelerated degradation tests of rolling element bearings and the public PRONOSTIA bearing datasets. Experimental results demonstrate the effectiveness of the proposed approach in improving the accuracy and convergence of RUL prediction of rolling element bearings.
科研通智能强力驱动
Strongly Powered by AbleSci AI