Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition

光催化 掺杂剂 材料科学 单独一对 氮气 兴奋剂 氧气 杂原子 光化学 带隙 化学工程 化学 催化作用 有机化学 戒指(化学) 工程类 光电子学 分子
作者
Yabin Jiang,Zongzhao Sun,Chao Tang,Yüxia Zhou,Lei Zeng,Limin Huang
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:240: 30-38 被引量:342
标识
DOI:10.1016/j.apcatb.2018.08.059
摘要

Porous structure, nitrogen defects and oxygen dopants are simultaneously introduced into the framework of graphitic carbon nitride (g-C3N4) by a simple co-pyrolysis of dicyandiamide and ammonium persulphate ((NH4)2S2O8). The (NH4)2S2O8 plays multi-function roles in the co-pyrolysis process. It not only restrains polycondensation to generate nitrogen defects but also introduces porous structure and oxygen dopants due to its strong oxidative ability. The synergetic effect of the nitrogen defects and oxygen dopants leads to the change of π band state and LP state (lone pair electrons), causing the change of electron transition in the modified g-C3N4. The transitions from impurity levels play a predominant role in excitation process while the transition from intrinsic HOMO to LUMO becomes subordinate, which improve the charge separation significantly. The modified g-C3N4 exhibits excellent photocatalytic hydrogen evolution activity under visible light illumination, which is almost 6 times higher than pristine g-C3N4 because of the improved efficiency of charge separation and increased specific surface area. These findings provide a simple and efficient method to improve the photocatalytic activity of g-C3N4 by changing the electron transition through a rational band structure engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力的迎松完成签到,获得积分20
1秒前
科研通AI5应助KKKK采纳,获得10
1秒前
3秒前
hugdoggy发布了新的文献求助10
3秒前
4秒前
小马甲应助勤奋的冰淇淋采纳,获得10
4秒前
4秒前
5秒前
乐乐应助一八四采纳,获得10
6秒前
7秒前
孤独的无血完成签到,获得积分10
7秒前
Akim应助大力的迎松采纳,获得10
8秒前
9秒前
好运藏在善良里完成签到,获得积分10
9秒前
范佩佩完成签到,获得积分10
10秒前
科研通AI5应助爱lx采纳,获得10
10秒前
李健应助迷路小猫崽采纳,获得10
11秒前
喃喃发布了新的文献求助10
11秒前
nono发布了新的文献求助20
11秒前
12秒前
Gluneko发布了新的文献求助10
13秒前
17秒前
18秒前
追光者完成签到,获得积分10
19秒前
flyfish完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
卞威振发布了新的文献求助10
23秒前
24秒前
24秒前
nono完成签到,获得积分10
26秒前
英俊的铭应助东方欲晓采纳,获得10
26秒前
26秒前
Jeason完成签到 ,获得积分10
27秒前
28秒前
28秒前
29秒前
30秒前
郭笑发布了新的文献求助10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423