Rational design and facile synthesis of two-dimensional hierarchical porous M3V2O8 (M = Co, Ni and Co–Ni) thin sheets assembled by ultrathin nanosheets as positive electrode materials for high-performance hybrid supercapacitors

超级电容器 材料科学 电极 薄膜 电化学 化学工程 多孔性 合理设计 电容 纳米技术 复合材料 化学 冶金 物理化学 工程类
作者
Biao Huang,Wensong Wang,Tao Pu,Jie Li,Chenglan Zhao,Li Xie,Lingyun Chen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:375: 121969-121969 被引量:169
标识
DOI:10.1016/j.cej.2019.121969
摘要

The development of advanced supercapacitors (SCs) depends largely on the rational design and facile manufacture of high performance electrode materials. The family of cobalt/nickel-based vanadates M3V2O8 (M = Co, Ni and Co–Ni) including Co3V2O8 (CVO), Ni3V2O8 (NVO) and Co1.5Ni1.5V2O8 (CNVO) has emerged as promising electrode materials for SCs, yet still limited by its unsatisfactory electrochemical performance. Herein, novel two-dimensional (2D) hierarchical porous cobalt/nickel-based vanadates thin sheets were synthesized via a succinct-operated hydrothermal method by direct decompostion of the mixed aqueous solution of NiCl2/CoCl2 and NaVO3 without using any substrate or surfactant. This unique porous architecture assembled by nanoflakes facilitates the ion migration and electronic transportation within the materials and endow the CNVO thin sheet-based electrode with a remarkable specific capacity of 848.5 C·g−1 (specific capacitance of 2617.5 F·g−1) at 1 A·g−1, which is more superior than the value of as-obtained CVO and NVO thin sheets and reported metal vanadates so far. In addition, a hybrid device (CNVO//activated carbon (AC)), fabricated by employing the CNVO thin sheets as positive material and AC as negative one, shows a maximum energy density of 51.66 Wh·kg−1 at the power density of 850 W·kg−1 and still remain 38.01 Wh·kg−1 at 8500 W·kg−1. The results presented in this work not only exhibit a promising prospect of 2D CNVO thin sheets in SCs but also provide a practicable pathway for the synthesis of other transition metal oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助紧张的毛衣采纳,获得10
1秒前
碧萱发布了新的文献求助10
2秒前
CherishLars完成签到,获得积分10
4秒前
宋子涵完成签到 ,获得积分10
5秒前
renmeitao66_3完成签到,获得积分10
5秒前
衡山后学祝晓钰完成签到,获得积分10
7秒前
悠然地八音完成签到,获得积分10
7秒前
zzz完成签到 ,获得积分10
8秒前
8秒前
小蘑菇应助Jyouang采纳,获得10
8秒前
10秒前
10秒前
10秒前
hyd1640完成签到,获得积分10
11秒前
路不迷发布了新的文献求助10
14秒前
我是老大应助sakura采纳,获得10
14秒前
浮游应助璐璐采纳,获得10
15秒前
明亮的幻竹完成签到,获得积分10
15秒前
彪壮的鹤发布了新的文献求助10
15秒前
15秒前
16秒前
Cling关注了科研通微信公众号
17秒前
俏皮诺言发布了新的文献求助10
17秒前
TATA完成签到,获得积分20
17秒前
18秒前
情怀应助包容寻芹采纳,获得10
18秒前
ahoshuo完成签到,获得积分10
18秒前
19秒前
今后应助任我行采纳,获得10
19秒前
19秒前
古琴残梦发布了新的文献求助10
19秒前
Juid应助newsl采纳,获得40
20秒前
CodeCraft应助路不迷采纳,获得10
22秒前
海潮飞翔发布了新的文献求助10
22秒前
23秒前
23秒前
西海岸的风完成签到,获得积分10
23秒前
e麓绝尘完成签到 ,获得积分10
24秒前
小七完成签到 ,获得积分10
25秒前
幸运小狗完成签到,获得积分10
25秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655