Rational design and facile synthesis of two-dimensional hierarchical porous M3V2O8 (M = Co, Ni and Co–Ni) thin sheets assembled by ultrathin nanosheets as positive electrode materials for high-performance hybrid supercapacitors

超级电容器 材料科学 电极 薄膜 电化学 化学工程 多孔性 合理设计 电容 纳米技术 复合材料 化学 冶金 物理化学 工程类
作者
Biao Huang,Wensong Wang,Tao Pu,Jie Li,Chenglan Zhao,Li Xie,Lingyun Chen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:375: 121969-121969 被引量:169
标识
DOI:10.1016/j.cej.2019.121969
摘要

The development of advanced supercapacitors (SCs) depends largely on the rational design and facile manufacture of high performance electrode materials. The family of cobalt/nickel-based vanadates M3V2O8 (M = Co, Ni and Co–Ni) including Co3V2O8 (CVO), Ni3V2O8 (NVO) and Co1.5Ni1.5V2O8 (CNVO) has emerged as promising electrode materials for SCs, yet still limited by its unsatisfactory electrochemical performance. Herein, novel two-dimensional (2D) hierarchical porous cobalt/nickel-based vanadates thin sheets were synthesized via a succinct-operated hydrothermal method by direct decompostion of the mixed aqueous solution of NiCl2/CoCl2 and NaVO3 without using any substrate or surfactant. This unique porous architecture assembled by nanoflakes facilitates the ion migration and electronic transportation within the materials and endow the CNVO thin sheet-based electrode with a remarkable specific capacity of 848.5 C·g−1 (specific capacitance of 2617.5 F·g−1) at 1 A·g−1, which is more superior than the value of as-obtained CVO and NVO thin sheets and reported metal vanadates so far. In addition, a hybrid device (CNVO//activated carbon (AC)), fabricated by employing the CNVO thin sheets as positive material and AC as negative one, shows a maximum energy density of 51.66 Wh·kg−1 at the power density of 850 W·kg−1 and still remain 38.01 Wh·kg−1 at 8500 W·kg−1. The results presented in this work not only exhibit a promising prospect of 2D CNVO thin sheets in SCs but also provide a practicable pathway for the synthesis of other transition metal oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙留香发布了新的文献求助10
1秒前
1秒前
2秒前
Wang完成签到,获得积分10
3秒前
科研混子完成签到,获得积分10
3秒前
涔雨发布了新的文献求助10
4秒前
4秒前
坦率的乐蕊完成签到 ,获得积分10
5秒前
瘦瘦的耷发布了新的文献求助10
5秒前
5秒前
传奇3应助辛勤金连采纳,获得10
6秒前
阳光的冬天完成签到,获得积分10
6秒前
kk发布了新的文献求助10
7秒前
8秒前
su发布了新的文献求助10
9秒前
完美世界应助lxx采纳,获得10
9秒前
10秒前
12秒前
今后应助葡萄萄萄采纳,获得30
12秒前
12秒前
希希发布了新的文献求助10
14秒前
努力长胖的羊完成签到,获得积分10
14秒前
斯文的盼海完成签到 ,获得积分10
15秒前
雷家发布了新的文献求助10
17秒前
17秒前
Jocelyn完成签到,获得积分10
18秒前
zh完成签到,获得积分20
19秒前
20秒前
领导范儿应助阳光沛柔采纳,获得30
20秒前
量子星尘发布了新的文献求助10
21秒前
恐龙完成签到 ,获得积分10
21秒前
Zero完成签到 ,获得积分10
22秒前
美好斓发布了新的文献求助30
24秒前
24秒前
CipherSage应助雷家采纳,获得10
24秒前
简单面包完成签到,获得积分10
24秒前
希望天下0贩的0应助希希采纳,获得10
24秒前
26秒前
Hello应助rouxi采纳,获得10
26秒前
爆米花应助涔雨采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539399
关于积分的说明 14167889
捐赠科研通 4456910
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740