Rational design and facile synthesis of two-dimensional hierarchical porous M3V2O8 (M = Co, Ni and Co–Ni) thin sheets assembled by ultrathin nanosheets as positive electrode materials for high-performance hybrid supercapacitors

超级电容器 材料科学 电极 薄膜 电化学 化学工程 多孔性 合理设计 电容 纳米技术 复合材料 化学 冶金 物理化学 工程类
作者
Biao Huang,Wensong Wang,Tao Pu,Jie Li,Chenglan Zhao,Li Xie,Lingyun Chen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:375: 121969-121969 被引量:169
标识
DOI:10.1016/j.cej.2019.121969
摘要

The development of advanced supercapacitors (SCs) depends largely on the rational design and facile manufacture of high performance electrode materials. The family of cobalt/nickel-based vanadates M3V2O8 (M = Co, Ni and Co–Ni) including Co3V2O8 (CVO), Ni3V2O8 (NVO) and Co1.5Ni1.5V2O8 (CNVO) has emerged as promising electrode materials for SCs, yet still limited by its unsatisfactory electrochemical performance. Herein, novel two-dimensional (2D) hierarchical porous cobalt/nickel-based vanadates thin sheets were synthesized via a succinct-operated hydrothermal method by direct decompostion of the mixed aqueous solution of NiCl2/CoCl2 and NaVO3 without using any substrate or surfactant. This unique porous architecture assembled by nanoflakes facilitates the ion migration and electronic transportation within the materials and endow the CNVO thin sheet-based electrode with a remarkable specific capacity of 848.5 C·g−1 (specific capacitance of 2617.5 F·g−1) at 1 A·g−1, which is more superior than the value of as-obtained CVO and NVO thin sheets and reported metal vanadates so far. In addition, a hybrid device (CNVO//activated carbon (AC)), fabricated by employing the CNVO thin sheets as positive material and AC as negative one, shows a maximum energy density of 51.66 Wh·kg−1 at the power density of 850 W·kg−1 and still remain 38.01 Wh·kg−1 at 8500 W·kg−1. The results presented in this work not only exhibit a promising prospect of 2D CNVO thin sheets in SCs but also provide a practicable pathway for the synthesis of other transition metal oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助中森菜龙采纳,获得10
刚刚
ChatGPT发布了新的文献求助10
1秒前
烟酒僧完成签到,获得积分10
1秒前
1秒前
mio发布了新的文献求助10
2秒前
2秒前
2秒前
CipherSage应助风中擎采纳,获得10
2秒前
zzz发布了新的文献求助10
3秒前
3秒前
okisseven7完成签到,获得积分10
3秒前
程佑贵完成签到,获得积分20
4秒前
陶醉鞅发布了新的文献求助10
4秒前
5秒前
曾维嘉完成签到,获得积分10
5秒前
5秒前
6秒前
Cheney发布了新的文献求助10
6秒前
6秒前
6秒前
香橙完成签到,获得积分10
7秒前
凶狠的小兔子完成签到 ,获得积分10
7秒前
Hello应助EMM采纳,获得10
7秒前
牧听莲完成签到,获得积分10
8秒前
沈姐姐完成签到,获得积分20
8秒前
程佑贵发布了新的文献求助10
8秒前
8秒前
9秒前
dandan完成签到,获得积分10
9秒前
CY03完成签到,获得积分10
9秒前
活泼的寄风完成签到,获得积分10
9秒前
9秒前
123456qqqq完成签到,获得积分10
10秒前
10秒前
oudian完成签到,获得积分10
10秒前
ljhya完成签到,获得积分10
10秒前
Esther发布了新的文献求助10
11秒前
11秒前
小电驴完成签到 ,获得积分10
11秒前
mio完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406