解码方法
计算机科学
预处理器
人工智能
带宽(计算)
语音识别
算法
电信
作者
Ji-Hoon Jeong,No-Sang Kwak,Cuntai Guan,Seong‐Whan Lee
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering
[Institute of Electrical and Electronics Engineers]
日期:2020-03-01
卷期号:28 (3): 687-698
被引量:97
标识
DOI:10.1109/tnsre.2020.2966826
摘要
An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge,existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement (p<; 0.01) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudoonline analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI