Decoding Movement-Related Cortical Potentials Based on Subject-Dependent and Section-Wise Spectral Filtering

解码方法 计算机科学 预处理器 人工智能 带宽(计算) 语音识别 算法 电信
作者
Ji-Hoon Jeong,No-Sang Kwak,Cuntai Guan,Seong‐Whan Lee
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 687-698 被引量:97
标识
DOI:10.1109/tnsre.2020.2966826
摘要

An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge,existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement (p<; 0.01) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudoonline analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助静俏采纳,获得10
1秒前
王也完成签到,获得积分10
1秒前
s可发布了新的文献求助20
2秒前
沉默的不惜完成签到,获得积分20
3秒前
Becky完成签到,获得积分10
4秒前
4秒前
4秒前
赘婿应助爱学习的鼠鼠采纳,获得10
5秒前
笑、完成签到,获得积分10
5秒前
尊敬的左蓝完成签到,获得积分10
6秒前
Sherlock完成签到,获得积分10
6秒前
6秒前
8秒前
简单十三发布了新的文献求助10
8秒前
风险事件完成签到,获得积分10
9秒前
Jasper应助桂花乌龙采纳,获得30
9秒前
9秒前
学术智子完成签到,获得积分10
9秒前
刮风这天完成签到,获得积分10
11秒前
uuuu发布了新的文献求助10
11秒前
XYWang发布了新的文献求助10
11秒前
顺利玫瑰关注了科研通微信公众号
12秒前
完美世界应助香蕉子骞采纳,获得10
13秒前
麻辣香锅应助cmccs采纳,获得50
13秒前
大胆的小懒猪完成签到,获得积分10
13秒前
Alerina完成签到,获得积分10
14秒前
壮观的衫完成签到,获得积分10
15秒前
16秒前
美满的小蘑菇完成签到 ,获得积分10
17秒前
姜玲完成签到,获得积分10
17秒前
ding应助c_123采纳,获得10
18秒前
18秒前
19秒前
潆媣完成签到,获得积分20
19秒前
19秒前
乐观寻雪发布了新的文献求助30
20秒前
20秒前
21秒前
21秒前
星辰大海应助思琪HMH采纳,获得30
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155652
求助须知:如何正确求助?哪些是违规求助? 2806900
关于积分的说明 7870998
捐赠科研通 2465170
什么是DOI,文献DOI怎么找? 1312153
科研通“疑难数据库(出版商)”最低求助积分说明 629913
版权声明 601892