谷胱甘肽过氧化物酶
体内
化学
过氧化物酶
活性氧
金属有机骨架
体外
谷胱甘肽
配体(生物化学)
生物化学
酶
生物物理学
有机化学
生物
受体
吸附
生物技术
作者
Jiangjiexing Wu,Yijun Yu,Yuan Cheng,Chaoqun Cheng,Yihong Zhang,Bo Jiang,Xiaozhi Zhao,Leiying Miao,Hui Wei
标识
DOI:10.1002/anie.202010714
摘要
Glutathione peroxidase (GPx) plays an important role in maintaining the reactive oxygen metabolic balance, yet limited GPx-mimicking nanozymes are currently available for in vivo therapy. Herein, a ligand engineering strategy is developed to modulate the GPx-mimicking activity of a metal-organic framework (MOF) nanozyme. With different substituted ligands, the GPx-mimicking activities of MIL-47(V)-X (MIL stands for Materials of Institute Lavoisier; X=F, Br, NH2 , CH3 , OH, and H) MOFs are rationally regulated. With the best one as an example, both in vitro and in vivo experiments reveal the excellent antioxidation ability of MIL-47(V)-NH2 , which alleviates the inflammatory response effectively for both ear injury and colitis, and is more active than MIL-47(V). This study proves that high-performance GPx-mimicking nanozymes can be rationally designed by a ligand engineering strategy, and that structure-activity relationships can direct the in vivo therapy. This study enriches nanozyme research and expands the range of biomimetic MOFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI