A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre

视网膜 医学 疾病 心脏病学 生物医学工程 内科学 眼科
作者
Carol Y. Cheung,Dejiang Xu,Ching‐Yu Cheng,Charumathi Sabanayagam,Yih Chung Tham,Marco Yu,Tyler Hyungtaek Rim,Chew Yian Chai,Bamini Gopinath,Paul Mitchell,Richie Poulton,Terrie E. Moffitt,Avshalom Caspi,Jason C. Yam,Clement C. Tham,Jost B. Jonas,Ya Xing Wang,Su Jeong Song,Louise M. Burrell,Omar Farouque
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 498-508 被引量:265
标识
DOI:10.1038/s41551-020-00626-4
摘要

Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using diverse multiethnic multicountry datasets that comprise more than 70,000 images. Retinal-vessel calibre measured by the models and by expert human graders showed high agreement, with overall intraclass correlation coefficients of between 0.82 and 0.95. The models performed comparably to or better than expert graders in associations between measurements of retinal-vessel calibre and CVD risk factors, including blood pressure, body-mass index, total cholesterol and glycated-haemoglobin levels. In retrospectively measured prospective datasets from a population-based study, baseline measurements performed by the deep-learning system were associated with incident CVD. Our findings motivate the development of clinically applicable explainable end-to-end deep-learning systems for the prediction of CVD on the basis of the features of retinal vessels in retinal photographs. Deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs perform comparably to or better than expert graders in associations of measurements of retinal-vessel calibre with cardiovascular risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ADDED完成签到,获得积分10
刚刚
1秒前
zrl发布了新的文献求助10
1秒前
3秒前
马格发布了新的文献求助10
3秒前
4秒前
热心夏天发布了新的文献求助10
4秒前
yumi完成签到,获得积分10
5秒前
包容代芹发布了新的文献求助10
5秒前
食杂砸发布了新的文献求助10
6秒前
CipherSage应助zzz采纳,获得10
7秒前
Yasmine完成签到 ,获得积分10
8秒前
MiaoRui完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
丘比特应助if采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
Vivid完成签到,获得积分10
11秒前
时丶倾发布了新的文献求助10
13秒前
13秒前
semigreen完成签到 ,获得积分10
14秒前
木木发布了新的文献求助10
15秒前
夜雨完成签到,获得积分10
15秒前
木木木熙完成签到,获得积分10
15秒前
哈哈哈哈发布了新的文献求助10
15秒前
Lucia完成签到 ,获得积分10
16秒前
17秒前
18秒前
孙颖发布了新的文献求助10
18秒前
seedcode完成签到,获得积分10
18秒前
早睡早起身体好Q完成签到 ,获得积分10
18秒前
田様应助木木采纳,获得10
20秒前
20秒前
21秒前
22秒前
罗攀发布了新的文献求助10
22秒前
22秒前
22秒前
luo完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858