A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre

视网膜 医学 疾病 心脏病学 生物医学工程 内科学 眼科
作者
Carol Y. Cheung,Dejiang Xu,Ching‐Yu Cheng,Charumathi Sabanayagam,Yih‐Chung Tham,Marco Yu,Tyler Hyungtaek Rim,Chew Yian Chai,Bamini Gopinath,Paul Mitchell,Richie Poulton,Terrie E. Moffitt,Avshalom Caspi,Jason C. Yam,Clement C. Tham,Jost B. Jonas,Ya Xing Wang,Su Jeong Song,Louise M. Burrell,Omar Farouque
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:5 (6): 498-508 被引量:212
标识
DOI:10.1038/s41551-020-00626-4
摘要

Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using diverse multiethnic multicountry datasets that comprise more than 70,000 images. Retinal-vessel calibre measured by the models and by expert human graders showed high agreement, with overall intraclass correlation coefficients of between 0.82 and 0.95. The models performed comparably to or better than expert graders in associations between measurements of retinal-vessel calibre and CVD risk factors, including blood pressure, body-mass index, total cholesterol and glycated-haemoglobin levels. In retrospectively measured prospective datasets from a population-based study, baseline measurements performed by the deep-learning system were associated with incident CVD. Our findings motivate the development of clinically applicable explainable end-to-end deep-learning systems for the prediction of CVD on the basis of the features of retinal vessels in retinal photographs. Deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs perform comparably to or better than expert graders in associations of measurements of retinal-vessel calibre with cardiovascular risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clientprogram完成签到,获得积分0
刚刚
杳鸢应助泽灵采纳,获得10
刚刚
眨眼眨眨眼完成签到,获得积分10
刚刚
一台小钢炮完成签到,获得积分10
刚刚
Starry完成签到,获得积分20
1秒前
韩小寒qqq完成签到,获得积分10
2秒前
天真的夜山完成签到,获得积分10
2秒前
ueue完成签到,获得积分10
3秒前
大力怀亦完成签到,获得积分20
3秒前
Mandarine发布了新的文献求助10
3秒前
蒙开心完成签到 ,获得积分10
4秒前
Akim应助北璃采纳,获得10
4秒前
修道院的豌豆完成签到 ,获得积分10
4秒前
雪花完成签到 ,获得积分10
5秒前
75986686完成签到,获得积分10
5秒前
ueue发布了新的文献求助10
5秒前
LYY完成签到,获得积分10
6秒前
小线团黑桃完成签到,获得积分10
6秒前
xxj完成签到 ,获得积分10
8秒前
TAO关闭了TAO文献求助
9秒前
糖葫芦完成签到,获得积分10
9秒前
sh131完成签到,获得积分10
9秒前
hawaii66完成签到 ,获得积分10
10秒前
朴实以松完成签到,获得积分10
10秒前
语恒完成签到,获得积分10
11秒前
鱼鱼片片完成签到,获得积分10
11秒前
11秒前
wh完成签到,获得积分10
12秒前
Mandarine完成签到,获得积分10
13秒前
过儿完成签到,获得积分10
13秒前
guoguo完成签到 ,获得积分10
14秒前
Jasper应助ueue采纳,获得10
14秒前
15秒前
咿呀呀嘿哟完成签到 ,获得积分20
15秒前
余杭村王小虎完成签到,获得积分10
15秒前
琉璃完成签到,获得积分10
16秒前
忆夕发布了新的文献求助10
17秒前
zygclwl完成签到,获得积分10
17秒前
ahai完成签到,获得积分10
17秒前
酷波er应助乔治采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855