A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre

计算机科学 视网膜
作者
Carol Y. Cheung,Dejiang Xu,Ching-Yu Cheng,Charumathi Sabanayagam,Yih Chung Tham,Marco Yu,Tyler Hyungtaek Rim,Chew Yian Chai,Bamini Gopinath,Paul Mitchell,Richie Poulton,Terrie E. Moffitt,Avshalom Caspi,Jason C. S. Yam,Clement C Y Tham,Jost B. Jonas,Ya Xing Wang,Su Jeong Song,Louise M Burrell,Omar Farouque,Ling-Jun Li,Gavin Tan,Daniel S W Ting,Wynne Hsu,Mong Li Lee,Tien Yin Wong
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 498-508 被引量:16
标识
DOI:10.1038/s41551-020-00626-4
摘要

Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using diverse multiethnic multicountry datasets that comprise more than 70,000 images. Retinal-vessel calibre measured by the models and by expert human graders showed high agreement, with overall intraclass correlation coefficients of between 0.82 and 0.95. The models performed comparably to or better than expert graders in associations between measurements of retinal-vessel calibre and CVD risk factors, including blood pressure, body-mass index, total cholesterol and glycated-haemoglobin levels. In retrospectively measured prospective datasets from a population-based study, baseline measurements performed by the deep-learning system were associated with incident CVD. Our findings motivate the development of clinically applicable explainable end-to-end deep-learning systems for the prediction of CVD on the basis of the features of retinal vessels in retinal photographs. Deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs perform comparably to or better than expert graders in associations of measurements of retinal-vessel calibre with cardiovascular risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清风徐来发布了新的文献求助10
刚刚
可爱书翠发布了新的文献求助50
2秒前
2秒前
一只大老蹬完成签到,获得积分10
2秒前
Birdy Young发布了新的文献求助10
3秒前
3秒前
那奇泡芙发布了新的文献求助10
3秒前
4秒前
ab发布了新的文献求助10
4秒前
在水一方应助Dou采纳,获得30
7秒前
8秒前
8秒前
8秒前
泡泡发布了新的文献求助10
10秒前
科研通AI2S应助roclie采纳,获得10
10秒前
Lucas应助Jam采纳,获得10
10秒前
清风徐来完成签到,获得积分10
10秒前
11秒前
乐乐应助鱼鳞飞飞采纳,获得10
11秒前
Renee应助hihi采纳,获得10
11秒前
Kin_L发布了新的文献求助10
13秒前
七分饱完成签到,获得积分10
13秒前
隐形曼青应助活力大厦B采纳,获得10
14秒前
领导范儿应助匆匆采纳,获得10
15秒前
Lixueyu发布了新的文献求助10
15秒前
泡泡完成签到,获得积分10
16秒前
16秒前
小马日常挨打完成签到 ,获得积分10
17秒前
啾啾完成签到 ,获得积分10
18秒前
虚心黄蜂完成签到,获得积分10
18秒前
orixero应助源源采纳,获得10
18秒前
怕孤单的听寒完成签到,获得积分10
18秒前
Linda发布了新的文献求助200
18秒前
隐形浩宇完成签到 ,获得积分10
19秒前
lanwei完成签到,获得积分10
19秒前
完美世界应助小冯采纳,获得10
21秒前
科研通AI2S应助一一采纳,获得10
21秒前
21秒前
杰杰发布了新的文献求助10
21秒前
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160857
求助须知:如何正确求助?哪些是违规求助? 2812058
关于积分的说明 7894301
捐赠科研通 2470980
什么是DOI,文献DOI怎么找? 1315808
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602068