Encapsulating V2O3 Nanoparticles in Carbon Nanofibers with Internal Void Spaces for a Self-Supported Anode Material in Superior Lithium-Ion Capacitors

阳极 材料科学 阴极 纳米颗粒 碳纳米纤维 纳米纤维 化学工程 空隙(复合材料) 功率密度 纳米技术 复合材料 电极 化学 碳纳米管 热力学 物理化学 工程类 功率(物理) 物理
作者
Nizao Kong,Mengzhen Jia,Cheng Yang,Jinle Lan,Yunhua Yu,Xiaoping Yang
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:7 (24): 19483-19495 被引量:44
标识
DOI:10.1021/acssuschemeng.9b04419
摘要

A lithium-ion capacitor (LIC) consisting of a lithium-ion battery (LIB)-type anode and a supercapacitor (SC)-type cathode gains wide attention on account of the integration with the merits of high-energy LIB and high-power SC. However, LIC usually shows low energy/power density at high charge/discharge rate due to the sluggish charge/discharge kinetics of the LIB-type anode. Herein, to address this issue, we develop a self-supported anode material for LIC (V2O3@CNFs) with good charge transfer kinetics by encapsulating V2O3 nanoparticles in carbon nanofibers with internal void spaces. The V2O3 nanoparticles not only provide abundant Li+-storage sites but also shorten routes for Li+ diffusion and electron transport, which both improve the charge transfer kinetics. Besides, the 3D conductive carbon nanofiber network serves as a mechanical support for V2O3 nanoparticles and provides the reserved internal void spaces to buffer the volumetric expansion and subsequent aggregation during the charge–discharge process of V2O3. Consequently, the optimal V2O3@CNF anode delivers a high capacity (569.1 mA h g–1 at 0.1 A g–1), surprising rate capability (238.5 mA h g–1 at 10.0 A g–1) and long-term cyclic steadiness (91.0% retention after 1000 cycles at 1.0 A g–1) in half-cell tests. Furthermore, the LICs assembled with activated carbon cathode and V2O3@CNF anode exhibit a high energy density (97.6 W h kg–1), a high power density (12.1 kW kg–1 with 20.2 W h kg–1 retained), and impressive cyclic steadiness (73% retention after 5000 cycles at 1.0 A g–1) in a broad working voltage (0.005–4.0 V).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王世俊发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
卡恩完成签到 ,获得积分0
1秒前
文静的夜梅完成签到 ,获得积分10
2秒前
FangyingTang完成签到 ,获得积分10
2秒前
嘿嘿嘿发布了新的文献求助10
3秒前
3秒前
酷波er应助Sophia采纳,获得10
4秒前
充电宝应助淡定的幼南采纳,获得10
5秒前
6秒前
6秒前
细心书包应助王源采纳,获得10
8秒前
爱喝芬达发布了新的文献求助10
8秒前
yyy发布了新的文献求助10
8秒前
baby3480完成签到,获得积分10
8秒前
8秒前
野原小龙虾完成签到,获得积分10
9秒前
qzh006完成签到,获得积分10
9秒前
Akim应助甜甜戎采纳,获得10
11秒前
隐形曼青应助drift采纳,获得10
11秒前
12秒前
星辰大海应助pengding采纳,获得10
12秒前
李爱国应助神秘猎牛人采纳,获得10
12秒前
13秒前
13秒前
瘦瘦小萱发布了新的文献求助10
13秒前
虚心的唯雪完成签到 ,获得积分10
14秒前
化悲愤高压完成签到,获得积分20
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
keep完成签到,获得积分10
17秒前
18秒前
南非的猫发布了新的文献求助10
19秒前
fancy发布了新的文献求助10
19秒前
19秒前
乐乐应助着急的含双采纳,获得10
20秒前
甜甜戎完成签到,获得积分10
21秒前
搜集达人应助慢慢采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424595
求助须知:如何正确求助?哪些是违规求助? 4538935
关于积分的说明 14164426
捐赠科研通 4455911
什么是DOI,文献DOI怎么找? 2443990
邀请新用户注册赠送积分活动 1435069
关于科研通互助平台的介绍 1412452