Engineering Strategies for Lymph Node Targeted Immune Activation

免疫系统 淋巴结 医学 计算生物学 计算机科学 免疫学 生物
作者
Yong Chen,Stefaan De Koker,Bruno G. De Geest
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (10): 2055-2067 被引量:98
标识
DOI:10.1021/acs.accounts.0c00260
摘要

Development of vaccine technology that induces long lasting and potent adaptive immune responses is of vital importance to combat emerging pathogens and to design the next generation of cancer immunotherapies. Advanced biomaterials such as nanoparticle carriers are intensively explored to increase the efficacy and safety of vaccines and immunotherapies, based on their intrinsic potential to focus the therapeutic payload onto the relevant immune cells and to limit systemic distribution. With adaptive immune responses being primarily initiated in lymph nodes, the potency of nanoparticle vaccines in turn is tightly linked to their capacity to reach and accumulate in the lymph nodes draining the immunization site. Here, we discuss the main strategies applied to increase nanoparticle delivery to lymph nodes: (1) direct lymph node injection, (2) active cell-mediated transport through targeting of peripheral dendritic cells, and (3) exploiting passive transport through the afferent lymphatics.The intralymph nodal injection is obviously the most direct way for nanoparticles to reach lymph nodes, and multiple studies have demonstrated its capability in enhancing immunostimulant drugs' immune activation and increasing the therapeutic window. However, the requirement of using ultrasound guidance for mapping lymph nodes in patients renders intranodal administration unsuited for mass vaccination campaigns. As lymph nodes are fine structured organs with lymphocytes and chemokine gradients arrayed in a highly ordered fashion, the breakdown of such formats by the intralymph nodal injection is another concern. The exploitation of dendritic cells as live vectors for transporting nanoparticles to lymph nodes has intensively been studied both ex vivo and in vivo. While ex vivo engineering of dendritic cells in theory can achieve 100% dendritic cell-specific selectivity, a scenario impossible to be achieved in vivo, this procedure is usually laborious and complicated and entails the participation of professional staff and equipment. In addition, the poor efficiency of dendritic cell migration to the draining lymph node is another significant limitation following the injection of ex vivo cultured dendritic cells. Thus, in vivo targeting of surface receptors, particularly C-type lectin receptors, on dendritic cells by conjugating nanoparticles with antibodies or ligands is intensively studied by both academia and industry. Although such nanoparticles in vivo still face nonspecific engulfment by various phagocytes, multiple studies have shown its feasibility in targeting dendritic cells with high selectivity. Moreover, through optimizing the physicochemical properties of nanoparticles, nanoparticles can passively drain to lymph nodes carried by the interstitial flow. Compared to dendritic cell-mediated transport, passive draining is much faster and of higher efficiency. Of all such properties, size is the most important parameter as large particles (>500 nm) can only reach lymph nodes by an active cell-mediated transport. Other surface properties, such as the charge and the balance of hydrophobicity-vs-hydrophilicity, strongly influence the mobility of nanoparticles in the extracellular space. In addition, albumin, a natural fatty acid transporter, has recently been demonstrated capable of binding the amphiphiles through their lipid moiety and subsequent transporting them to lymph nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海林完成签到 ,获得积分10
刚刚
4秒前
123完成签到 ,获得积分10
7秒前
123完成签到 ,获得积分10
9秒前
9秒前
闪闪青雪完成签到,获得积分10
11秒前
13秒前
源孤律醒完成签到 ,获得积分10
13秒前
TanXu完成签到 ,获得积分10
13秒前
15秒前
gcl完成签到,获得积分10
17秒前
20秒前
润润轩轩完成签到 ,获得积分10
23秒前
乌特拉完成签到 ,获得积分10
28秒前
MchemG应助gcl采纳,获得20
28秒前
珠珠完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
小明完成签到 ,获得积分10
32秒前
Song完成签到,获得积分10
33秒前
Breeze完成签到 ,获得积分10
35秒前
科研顺利完成签到,获得积分10
36秒前
壮观的菠萝完成签到,获得积分10
39秒前
40秒前
爱听歌嚓茶完成签到,获得积分10
41秒前
Steven完成签到,获得积分10
43秒前
风中一叶完成签到 ,获得积分0
43秒前
1993963发布了新的文献求助10
45秒前
CL完成签到,获得积分10
46秒前
小蘑菇应助风清扬采纳,获得10
46秒前
吉吉完成签到 ,获得积分10
48秒前
49秒前
Rn完成签到 ,获得积分0
51秒前
Ava应助1993963采纳,获得10
53秒前
科目三应助hui采纳,获得10
55秒前
不秃燃的小老弟完成签到 ,获得积分10
55秒前
白昼の月完成签到 ,获得积分0
56秒前
kiwi完成签到,获得积分20
58秒前
华仔应助猪猪hero采纳,获得10
59秒前
神勇友灵完成签到,获得积分0
1分钟前
zhang完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603497
求助须知:如何正确求助?哪些是违规求助? 4688514
关于积分的说明 14853926
捐赠科研通 4692781
什么是DOI,文献DOI怎么找? 2540759
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471763