Application of a multiple linear regression model of FEV1 in pulmonary function test

肺功能测试 线性回归 医学 回归分析 逐步回归 相关性 内科学 统计 数学 几何学
作者
Qingyu Dong,Tianran Song,Chenchen Jiang,Qin Yao,Fang Chen
出处
期刊:Journal of Southern Medical University [Editorial of Southern Medical University]
卷期号:40 (12): 1799-1803
标识
DOI:10.12122/j.issn.1673-4254.2020.12.15
摘要

Objective To construct a multiple linear regression model of forced expiratory volume in 1 second (FEV1) for estimating FEV1 in special populations unable to receive or uncooperative in pulmonary ventilation function tests. Methods The multiple linear regression model of FEV1 was constructed based on the data of 813 individuals undergoing pulmonary function tests in First Affiliated Hospital of Zhejiang Chinese Medical University between September, 2017 and September, 2019, and was validated using the data of another 94 individuals from the same hospital between January and July, 2020. FEV1 of the individuals was measured by pulmonary ventilation function test, and respiratory resistance (Rrs) was measured using forced oscillation technique (FOT). Pearson correlation analysis was used to assess the correlation between the factors, and the model equation was established by multiple stepwise regression analysis. The calculated FEV1 based on the model was compared with the measured FEV1 among both the individuals included for modeling and validation. Results FEV1 was not significantly correlated with BMI (r=-0.026, P=0.457), poorly correlated with body mass (r=0.382, P=0.000), positively correlated with height (r=0.723, P=0.000), and negatively correlated with Rrs (r=-0.503, P=0.000) with an obvious gender differences (t=18.517, P=0.000). FEV1 was positively correlated with age among individuals below 25 years of age (r=0.578, P=0.000) and was negatively correlated with age among those beyond or at the age of 25 (r=-0.589, P=0.000). For individuals beyond or at the age of 25 years, the variables of height, gender, age and Rrs were included in the model, and the calculated FEV1 did not differ significantly from the measured values in either the modeling sample (n=751; t=1.293, P=0.196) or the verification sample (n=83;t=-1.736, P=0.086), and the two values were well correlated in the verification sample (r=0.891, P=0.000). For individuals below 25 years, only height was included in the model, and the calculated FEV1 and the measured values showed no significant difference in the modeling sample (n=62; t=-0.009, P=0.993) or the verification sample (n=11; t=-0.635, P=0.540) with a good correlation in the verification sample (r=0.795, P=0.003). Conclusions The multiple linear regression model for calculating FEV1 constructed in this study is suitable for clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
个性的平蓝完成签到,获得积分10
1秒前
1秒前
2秒前
哈哈哈哈哈哈完成签到,获得积分10
2秒前
金小豪完成签到,获得积分10
2秒前
xxl发布了新的文献求助10
2秒前
on完成签到,获得积分10
2秒前
2秒前
Sera完成签到,获得积分20
3秒前
古药完成签到,获得积分10
3秒前
drjim完成签到,获得积分10
4秒前
柚子发布了新的文献求助10
4秒前
我的账号完成签到,获得积分10
4秒前
4秒前
研友_89jWGL完成签到,获得积分10
5秒前
5秒前
过客发布了新的文献求助50
6秒前
杨杰发布了新的文献求助10
6秒前
半生瓜完成签到,获得积分10
6秒前
清脆半邪完成签到,获得积分10
6秒前
来了完成签到,获得积分10
6秒前
starry完成签到,获得积分10
7秒前
大模型应助violetlishu采纳,获得20
7秒前
zz发布了新的文献求助10
7秒前
张泽宇完成签到,获得积分10
8秒前
唠叨的白曼完成签到,获得积分10
8秒前
香蕉觅云应助Jerry采纳,获得20
8秒前
NexusExplorer应助ZHB采纳,获得30
9秒前
9秒前
9秒前
小明应助落落采纳,获得10
9秒前
可爱的函函应助Sera采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
英姑应助chengs采纳,获得10
10秒前
火星上的雨柏完成签到 ,获得积分10
10秒前
科研通AI5应助jyyg采纳,获得30
11秒前
芦泸发布了新的文献求助10
11秒前
JamesPei应助不来也不去采纳,获得10
12秒前
聚砂成塔完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426