Application of a multiple linear regression model of FEV1 in pulmonary function test

肺功能测试 线性回归 医学 回归分析 逐步回归 相关性 内科学 统计 数学 几何学
作者
Qingyu Dong,Tianran Song,Chenchen Jiang,Qin Yao,Fang Chen
出处
期刊:Journal of Southern Medical University [Editorial of Southern Medical University]
卷期号:40 (12): 1799-1803
标识
DOI:10.12122/j.issn.1673-4254.2020.12.15
摘要

Objective To construct a multiple linear regression model of forced expiratory volume in 1 second (FEV1) for estimating FEV1 in special populations unable to receive or uncooperative in pulmonary ventilation function tests. Methods The multiple linear regression model of FEV1 was constructed based on the data of 813 individuals undergoing pulmonary function tests in First Affiliated Hospital of Zhejiang Chinese Medical University between September, 2017 and September, 2019, and was validated using the data of another 94 individuals from the same hospital between January and July, 2020. FEV1 of the individuals was measured by pulmonary ventilation function test, and respiratory resistance (Rrs) was measured using forced oscillation technique (FOT). Pearson correlation analysis was used to assess the correlation between the factors, and the model equation was established by multiple stepwise regression analysis. The calculated FEV1 based on the model was compared with the measured FEV1 among both the individuals included for modeling and validation. Results FEV1 was not significantly correlated with BMI (r=-0.026, P=0.457), poorly correlated with body mass (r=0.382, P=0.000), positively correlated with height (r=0.723, P=0.000), and negatively correlated with Rrs (r=-0.503, P=0.000) with an obvious gender differences (t=18.517, P=0.000). FEV1 was positively correlated with age among individuals below 25 years of age (r=0.578, P=0.000) and was negatively correlated with age among those beyond or at the age of 25 (r=-0.589, P=0.000). For individuals beyond or at the age of 25 years, the variables of height, gender, age and Rrs were included in the model, and the calculated FEV1 did not differ significantly from the measured values in either the modeling sample (n=751; t=1.293, P=0.196) or the verification sample (n=83;t=-1.736, P=0.086), and the two values were well correlated in the verification sample (r=0.891, P=0.000). For individuals below 25 years, only height was included in the model, and the calculated FEV1 and the measured values showed no significant difference in the modeling sample (n=62; t=-0.009, P=0.993) or the verification sample (n=11; t=-0.635, P=0.540) with a good correlation in the verification sample (r=0.795, P=0.003). Conclusions The multiple linear regression model for calculating FEV1 constructed in this study is suitable for clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王阿仔发布了新的文献求助10
刚刚
xixixiziwei发布了新的文献求助10
1秒前
1秒前
jason_dai完成签到,获得积分10
4秒前
lzx应助粗犷的灵松采纳,获得150
5秒前
SciGPT应助NMZN采纳,获得10
5秒前
xuda发布了新的文献求助10
6秒前
顾矜应助无限的谷丝采纳,获得10
6秒前
慕青应助苗条的芹采纳,获得10
6秒前
用户123完成签到,获得积分10
6秒前
7秒前
xixixiziwei完成签到,获得积分10
7秒前
俭朴新之完成签到 ,获得积分10
8秒前
榴芒兔应助依古比古采纳,获得10
8秒前
Lei完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
在雨里思考完成签到,获得积分10
10秒前
小蘑菇应助xuda采纳,获得10
10秒前
winnerbing发布了新的文献求助10
10秒前
EpiphanyQ发布了新的文献求助10
11秒前
华仔应助丝丝采纳,获得10
11秒前
还没想好完成签到,获得积分10
11秒前
xiaoli完成签到,获得积分20
12秒前
温暖的鸿完成签到 ,获得积分10
12秒前
13秒前
外向菲鹰发布了新的文献求助10
13秒前
闪闪的夜阑完成签到,获得积分10
13秒前
Kingzd完成签到,获得积分10
14秒前
芋圆不圆发布了新的文献求助10
15秒前
15秒前
老实憨厚发布了新的文献求助10
15秒前
saisyo发布了新的文献求助10
16秒前
Kirito完成签到,获得积分0
16秒前
17秒前
研途顺利发布了新的文献求助10
17秒前
桐桐应助哈哈哈哈采纳,获得10
18秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636