Application of a multiple linear regression model of FEV1 in pulmonary function test

肺功能测试 线性回归 医学 回归分析 逐步回归 相关性 内科学 统计 数学 几何学
作者
Qingyu Dong,Tianran Song,Chenchen Jiang,Qin Yao,Fang Chen
出处
期刊:Journal of Southern Medical University 卷期号:40 (12): 1799-1803
标识
DOI:10.12122/j.issn.1673-4254.2020.12.15
摘要

Objective To construct a multiple linear regression model of forced expiratory volume in 1 second (FEV1) for estimating FEV1 in special populations unable to receive or uncooperative in pulmonary ventilation function tests. Methods The multiple linear regression model of FEV1 was constructed based on the data of 813 individuals undergoing pulmonary function tests in First Affiliated Hospital of Zhejiang Chinese Medical University between September, 2017 and September, 2019, and was validated using the data of another 94 individuals from the same hospital between January and July, 2020. FEV1 of the individuals was measured by pulmonary ventilation function test, and respiratory resistance (Rrs) was measured using forced oscillation technique (FOT). Pearson correlation analysis was used to assess the correlation between the factors, and the model equation was established by multiple stepwise regression analysis. The calculated FEV1 based on the model was compared with the measured FEV1 among both the individuals included for modeling and validation. Results FEV1 was not significantly correlated with BMI (r=-0.026, P=0.457), poorly correlated with body mass (r=0.382, P=0.000), positively correlated with height (r=0.723, P=0.000), and negatively correlated with Rrs (r=-0.503, P=0.000) with an obvious gender differences (t=18.517, P=0.000). FEV1 was positively correlated with age among individuals below 25 years of age (r=0.578, P=0.000) and was negatively correlated with age among those beyond or at the age of 25 (r=-0.589, P=0.000). For individuals beyond or at the age of 25 years, the variables of height, gender, age and Rrs were included in the model, and the calculated FEV1 did not differ significantly from the measured values in either the modeling sample (n=751; t=1.293, P=0.196) or the verification sample (n=83;t=-1.736, P=0.086), and the two values were well correlated in the verification sample (r=0.891, P=0.000). For individuals below 25 years, only height was included in the model, and the calculated FEV1 and the measured values showed no significant difference in the modeling sample (n=62; t=-0.009, P=0.993) or the verification sample (n=11; t=-0.635, P=0.540) with a good correlation in the verification sample (r=0.795, P=0.003). Conclusions The multiple linear regression model for calculating FEV1 constructed in this study is suitable for clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助公园人采纳,获得50
5秒前
7秒前
望南完成签到,获得积分10
8秒前
winwin完成签到,获得积分10
9秒前
佛系养生发布了新的文献求助10
12秒前
务实的若剑完成签到,获得积分10
12秒前
Della完成签到,获得积分10
16秒前
LXx完成签到 ,获得积分10
16秒前
不配.应助kudoukoumei采纳,获得10
17秒前
ding应助醒醒采纳,获得10
18秒前
20秒前
pursuing发布了新的文献求助10
20秒前
佳远发布了新的文献求助10
25秒前
汉堡包应助你的男孩DD采纳,获得10
27秒前
辞轲完成签到,获得积分10
27秒前
Whiaper完成签到,获得积分10
28秒前
34秒前
景辣条应助科研通管家采纳,获得10
38秒前
ygr应助科研通管家采纳,获得20
38秒前
38秒前
景辣条应助科研通管家采纳,获得10
38秒前
上官若男应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
星辰大海应助科研通管家采纳,获得10
39秒前
景辣条应助科研通管家采纳,获得10
39秒前
0128lun应助科研通管家采纳,获得10
39秒前
41秒前
tachang完成签到,获得积分10
43秒前
44秒前
周浩宇发布了新的文献求助10
45秒前
荼柒完成签到,获得积分10
46秒前
懵懂的子骞完成签到 ,获得积分10
48秒前
ddd完成签到,获得积分10
56秒前
荼柒完成签到,获得积分10
57秒前
58秒前
58秒前
Lucas应助负责的柏柳采纳,获得30
1分钟前
SBGLP发布了新的文献求助10
1分钟前
老北京发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079