Prediction of adverse drug reactions using drug convolutional neural networks

药物警戒 药物反应 计算机科学 卷积神经网络 化学信息学 药品 机器学习 生物信息学 过程(计算) 人工智能 药物不良反应 人工神经网络 药物发现 数量结构-活动关系 数据挖掘 医学 药理学 生物信息学 化学 生物化学 基因 生物 操作系统
作者
Anjani Sankar Mantripragada,Sai Phani Teja,Rohith Reddy Katasani,Pratik Joshi,V. Masilamani,Raj Ramesh
出处
期刊:Journal of Bioinformatics and Computational Biology [World Scientific]
卷期号:19 (01): 2050046-2050046 被引量:17
标识
DOI:10.1142/s0219720020500468
摘要

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WJY完成签到,获得积分10
刚刚
轩辕剑身完成签到,获得积分0
1秒前
1101592875完成签到,获得积分10
2秒前
木雨亦潇潇完成签到,获得积分10
2秒前
刘亮亮完成签到,获得积分10
3秒前
www完成签到 ,获得积分0
3秒前
QS完成签到,获得积分10
3秒前
Lucas应助WJY采纳,获得10
5秒前
5秒前
Panini完成签到 ,获得积分10
6秒前
zhang完成签到 ,获得积分10
7秒前
她的城完成签到,获得积分0
8秒前
韩祖完成签到 ,获得积分10
8秒前
科研通AI6应助垣味栗子酱采纳,获得10
9秒前
Ellalala完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
草木发布了新的文献求助10
13秒前
13秒前
Much完成签到 ,获得积分10
16秒前
凡华完成签到 ,获得积分10
18秒前
奋进中的科研小菜鸟完成签到,获得积分10
19秒前
22秒前
星空完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
27秒前
巧克力完成签到 ,获得积分10
27秒前
HU完成签到,获得积分10
28秒前
垣味栗子酱完成签到,获得积分20
29秒前
胖胖玩啊玩完成签到 ,获得积分10
31秒前
Tammy完成签到,获得积分10
31秒前
阿伟完成签到,获得积分10
33秒前
无极微光应助白华苍松采纳,获得20
34秒前
酷酷的安柏完成签到 ,获得积分10
35秒前
36秒前
lovekobe完成签到 ,获得积分10
36秒前
鲁卓林完成签到,获得积分10
36秒前
甜美傲蕾完成签到,获得积分10
37秒前
37秒前
yunt完成签到 ,获得积分10
39秒前
小高完成签到 ,获得积分10
40秒前
kyros完成签到,获得积分10
41秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590