Prediction of adverse drug reactions using drug convolutional neural networks

药物警戒 药物反应 计算机科学 卷积神经网络 化学信息学 药品 机器学习 生物信息学 过程(计算) 人工智能 药物不良反应 人工神经网络 药物发现 数量结构-活动关系 数据挖掘 医学 药理学 生物信息学 化学 基因 操作系统 生物 生物化学
作者
Anjani Sankar Mantripragada,Sai Phani Teja,Rohith Reddy Katasani,Pratik Joshi,V. Masilamani,Raj Ramesh
出处
期刊:Journal of Bioinformatics and Computational Biology [World Scientific]
卷期号:19 (01): 2050046-2050046 被引量:7
标识
DOI:10.1142/s0219720020500468
摘要

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋芷发布了新的文献求助10
刚刚
程程完成签到,获得积分20
刚刚
英姑应助得到太阳采纳,获得10
刚刚
刚刚
清爽灰狼发布了新的文献求助10
1秒前
2秒前
Jupiter发布了新的文献求助20
2秒前
yali完成签到,获得积分10
2秒前
独特的鹅发布了新的文献求助10
2秒前
背后玉米完成签到,获得积分20
3秒前
Li发布了新的文献求助10
3秒前
轻松的万天完成签到 ,获得积分10
3秒前
小李完成签到,获得积分10
4秒前
化研发布了新的文献求助10
4秒前
慧子完成签到,获得积分10
6秒前
Hello应助科研糊涂神采纳,获得10
6秒前
帅仁123发布了新的文献求助10
7秒前
xia完成签到,获得积分10
9秒前
Garry完成签到,获得积分10
9秒前
小尚要加油完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助小狼采纳,获得30
10秒前
英姑应助清爽灰狼采纳,获得10
11秒前
魔笛的云宝完成签到,获得积分10
11秒前
12秒前
江河湖海完成签到 ,获得积分10
12秒前
Pan完成签到,获得积分10
12秒前
lixiao应助体贴的代真采纳,获得10
12秒前
chloe发布了新的文献求助30
13秒前
13秒前
imevm完成签到,获得积分10
14秒前
14秒前
15秒前
汐颜完成签到,获得积分10
15秒前
清脆秋翠完成签到,获得积分10
16秒前
cxlhzq发布了新的文献求助10
16秒前
大模型应助QIN采纳,获得10
16秒前
科研通AI2S应助ee采纳,获得10
16秒前
风趣狗完成签到,获得积分10
16秒前
16秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587