Prediction of adverse drug reactions using drug convolutional neural networks

药物警戒 药物反应 计算机科学 卷积神经网络 化学信息学 药品 机器学习 生物信息学 过程(计算) 人工智能 药物不良反应 人工神经网络 药物发现 数量结构-活动关系 数据挖掘 医学 药理学 生物信息学 化学 生物化学 基因 生物 操作系统
作者
Anjani Sankar Mantripragada,Sai Phani Teja,Rohith Reddy Katasani,Pratik Joshi,V. Masilamani,Raj Ramesh
出处
期刊:Journal of Bioinformatics and Computational Biology [World Scientific]
卷期号:19 (01): 2050046-2050046 被引量:17
标识
DOI:10.1142/s0219720020500468
摘要

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助will采纳,获得10
1秒前
chenzq发布了新的文献求助10
1秒前
小李同学完成签到,获得积分10
1秒前
H-C应助映城采纳,获得50
1秒前
烟花应助默默的不二采纳,获得10
1秒前
1秒前
2秒前
2秒前
Elanie.zh发布了新的文献求助10
3秒前
任性初夏发布了新的文献求助10
3秒前
YUan完成签到,获得积分10
3秒前
顺利的映天完成签到,获得积分10
3秒前
4秒前
科研通AI6应助ycy采纳,获得10
4秒前
Ava应助红油曲奇采纳,获得10
4秒前
4秒前
4秒前
汉堡包应助周凡淇采纳,获得30
4秒前
酷波er应助周凡淇采纳,获得10
4秒前
科研通AI6应助周凡淇采纳,获得10
4秒前
科研通AI6应助周凡淇采纳,获得10
4秒前
喔喔佳佳完成签到 ,获得积分10
5秒前
wx完成签到,获得积分10
5秒前
和谐的晓凡完成签到,获得积分10
5秒前
科研通AI6应助zhuh采纳,获得10
6秒前
小孟完成签到,获得积分10
7秒前
小何发布了新的文献求助10
7秒前
zxc发布了新的文献求助10
8秒前
庚123完成签到,获得积分10
8秒前
xu完成签到 ,获得积分10
8秒前
8秒前
科研通AI2S应助忧虑的安青采纳,获得20
9秒前
9秒前
輕瘋发布了新的文献求助10
10秒前
NexusExplorer应助Water采纳,获得30
10秒前
10秒前
10秒前
11秒前
11秒前
科研通AI6应助www采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407