Prediction of adverse drug reactions using drug convolutional neural networks

药物警戒 药物反应 计算机科学 卷积神经网络 化学信息学 药品 机器学习 生物信息学 过程(计算) 人工智能 药物不良反应 人工神经网络 药物发现 数量结构-活动关系 数据挖掘 医学 药理学 生物信息学 化学 基因 操作系统 生物 生物化学
作者
Anjani Sankar Mantripragada,Sai Phani Teja,Rohith Reddy Katasani,Pratik Joshi,V. Masilamani,Raj Ramesh
出处
期刊:Journal of Bioinformatics and Computational Biology [World Scientific]
卷期号:19 (01): 2050046-2050046 被引量:9
标识
DOI:10.1142/s0219720020500468
摘要

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qingkong发布了新的文献求助10
1秒前
1秒前
1秒前
细腻白柏完成签到,获得积分10
1秒前
1秒前
麦满分完成签到,获得积分10
2秒前
长度2到发布了新的文献求助10
2秒前
Alicia完成签到,获得积分10
3秒前
西瓜大虫完成签到,获得积分10
3秒前
害羞聋五发布了新的文献求助10
4秒前
prosperp完成签到,获得积分0
4秒前
Hongsong完成签到,获得积分20
4秒前
prosperp应助背侧丘脑采纳,获得10
5秒前
好好发布了新的文献求助10
5秒前
gaos发布了新的文献求助10
5秒前
einuo发布了新的文献求助10
6秒前
001完成签到,获得积分20
6秒前
李健应助阔达萧采纳,获得10
6秒前
陆离发布了新的文献求助10
6秒前
7秒前
66应助雪白红紫采纳,获得10
7秒前
英俊的铭应助东郭南松采纳,获得10
7秒前
YANG完成签到 ,获得积分10
8秒前
冷酷哈密瓜完成签到,获得积分10
9秒前
岁月流年完成签到,获得积分10
9秒前
9秒前
10秒前
8个老登发布了新的文献求助10
11秒前
douzi完成签到,获得积分10
11秒前
Li完成签到,获得积分10
11秒前
Macaco完成签到,获得积分10
12秒前
研友_8Yo3dn完成签到,获得积分10
12秒前
lilac完成签到,获得积分10
12秒前
misalia发布了新的文献求助10
12秒前
judy发布了新的文献求助10
12秒前
13秒前
李健的小迷弟应助称心铭采纳,获得30
13秒前
13秒前
adfadf发布了新的文献求助10
13秒前
CC完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678