Prediction of adverse drug reactions using drug convolutional neural networks

药物警戒 药物反应 计算机科学 卷积神经网络 化学信息学 药品 机器学习 生物信息学 过程(计算) 人工智能 药物不良反应 人工神经网络 药物发现 数量结构-活动关系 数据挖掘 医学 药理学 生物信息学 化学 基因 操作系统 生物 生物化学
作者
Anjani Sankar Mantripragada,Sai Phani Teja,Rohith Reddy Katasani,Pratik Joshi,V. Masilamani,Raj Ramesh
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:19 (01): 2050046-2050046 被引量:17
标识
DOI:10.1142/s0219720020500468
摘要

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dew应助uncle采纳,获得10
刚刚
1秒前
1秒前
科研通AI6应助张耘硕采纳,获得10
1秒前
1秒前
2秒前
2秒前
Hilda007应助大方藏花采纳,获得10
2秒前
英俊的铭应助细腻之卉采纳,获得10
2秒前
2秒前
科研通AI6应助一根毛采纳,获得20
2秒前
3秒前
Chem34发布了新的文献求助10
3秒前
4秒前
wjx发布了新的文献求助10
4秒前
4秒前
顾矜应助DTP采纳,获得10
5秒前
郭景贇发布了新的文献求助10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
星辰大海应助犹豫的怜珊采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
6秒前
公瑾完成签到 ,获得积分10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
阔达代芹发布了新的文献求助10
6秒前
666完成签到 ,获得积分10
6秒前
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
沙糖桔发布了新的文献求助10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
圣晟胜完成签到,获得积分10
6秒前
Zx_1993应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
llllll完成签到,获得积分20
7秒前
赘婿应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261307
求助须知:如何正确求助?哪些是违规求助? 4422429
关于积分的说明 13766330
捐赠科研通 4296949
什么是DOI,文献DOI怎么找? 2357579
邀请新用户注册赠送积分活动 1353993
关于科研通互助平台的介绍 1315165