亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of adverse drug reactions using drug convolutional neural networks

药物警戒 药物反应 计算机科学 卷积神经网络 化学信息学 药品 机器学习 生物信息学 过程(计算) 人工智能 药物不良反应 人工神经网络 药物发现 数量结构-活动关系 数据挖掘 医学 药理学 生物信息学 化学 生物化学 基因 生物 操作系统
作者
Anjani Sankar Mantripragada,Sai Phani Teja,Rohith Reddy Katasani,Pratik Joshi,V. Masilamani,Raj Ramesh
出处
期刊:Journal of Bioinformatics and Computational Biology [World Scientific]
卷期号:19 (01): 2050046-2050046 被引量:17
标识
DOI:10.1142/s0219720020500468
摘要

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Willow采纳,获得10
19秒前
甜美半芹完成签到 ,获得积分10
38秒前
48秒前
Criminology34应助甜美半芹采纳,获得10
52秒前
57秒前
1分钟前
AA完成签到,获得积分10
1分钟前
1分钟前
李健应助黄焖鸡米饭采纳,获得10
2分钟前
2分钟前
2分钟前
00完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
yin关闭了yin文献求助
3分钟前
Criminology34举报bvhjvj求助涉嫌违规
3分钟前
3分钟前
3分钟前
Willow发布了新的文献求助10
3分钟前
Criminology34举报paopao求助涉嫌违规
3分钟前
Willow完成签到,获得积分10
3分钟前
senpl发布了新的文献求助10
3分钟前
4分钟前
Janine发布了新的文献求助10
4分钟前
4分钟前
田様应助Janine采纳,获得10
4分钟前
汉堡包应助开朗雅霜采纳,获得10
4分钟前
4分钟前
Ya完成签到 ,获得积分10
4分钟前
Criminology34举报tl求助涉嫌违规
4分钟前
Entropy发布了新的文献求助10
4分钟前
Entropy关注了科研通微信公众号
4分钟前
4分钟前
Entropy关注了科研通微信公众号
4分钟前
5分钟前
5分钟前
开朗雅霜发布了新的文献求助10
5分钟前
5分钟前
orixero应助大胆的碧菡采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568222
求助须知:如何正确求助?哪些是违规求助? 4652699
关于积分的说明 14701951
捐赠科研通 4594544
什么是DOI,文献DOI怎么找? 2521065
邀请新用户注册赠送积分活动 1492895
关于科研通互助平台的介绍 1463698