已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Scopy: an integrated negative design python library for desirable HTS/VS database design

Python(编程语言) 下部结构 计算机科学 虚拟筛选 可视化 数据库 数据挖掘 算法 药物发现 程序设计语言 生物信息学 工程类 生物 结构工程
作者
Ziyi Yang,Zhiyuan Yang,Aiping Lü,Tingjun Hou,Dong‐Sheng Cao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:25
标识
DOI:10.1093/bib/bbaa194
摘要

Abstract Background High-throughput screening (HTS) and virtual screening (VS) have been widely used to identify potential hits from large chemical libraries. However, the frequent occurrence of ‘noisy compounds’ in the screened libraries, such as compounds with poor drug-likeness, poor selectivity or potential toxicity, has greatly weakened the enrichment capability of HTS and VS campaigns. Therefore, the development of comprehensive and credible tools to detect noisy compounds from chemical libraries is urgently needed in early stages of drug discovery. Results In this study, we developed a freely available integrated python library for negative design, called Scopy, which supports the functions of data preparation, calculation of descriptors, scaffolds and screening filters, and data visualization. The current version of Scopy can calculate 39 basic molecular properties, 3 comprehensive molecular evaluation scores, 2 types of molecular scaffolds, 6 types of substructure descriptors and 2 types of fingerprints. A number of important screening rules are also provided by Scopy, including 15 drug-likeness rules (13 drug-likeness rules and 2 building block rules), 8 frequent hitter rules (four assay interference substructure filters and four promiscuous compound substructure filters), and 11 toxicophore filters (five human-related toxicity substructure filters, three environment-related toxicity substructure filters and three comprehensive toxicity substructure filters). Moreover, this library supports four different visualization functions to help users to gain a better understanding of the screened data, including basic feature radar chart, feature-feature-related scatter diagram, functional group marker gram and cloud gram. Conclusion Scopy provides a comprehensive Python package to filter out compounds with undesirable properties or substructures, which will benefit the design of high-quality chemical libraries for drug design and discovery. It is freely available at https://github.com/kotori-y/Scopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芙芙完成签到,获得积分20
2秒前
向阳而生完成签到 ,获得积分10
2秒前
qiuqiule完成签到,获得积分20
3秒前
ydj发布了新的文献求助30
4秒前
且从容完成签到,获得积分10
5秒前
sunny完成签到 ,获得积分10
6秒前
居崽完成签到 ,获得积分10
6秒前
冷静芹菜完成签到 ,获得积分10
7秒前
uranus完成签到,获得积分10
8秒前
嘀嘀菇菇完成签到 ,获得积分10
9秒前
9秒前
13秒前
陈尹蓝完成签到 ,获得积分10
13秒前
空2完成签到 ,获得积分0
14秒前
ceeray23发布了新的文献求助111
14秒前
NattyPoe完成签到,获得积分10
16秒前
Diligency完成签到 ,获得积分10
16秒前
落落完成签到 ,获得积分0
16秒前
yliaoyou完成签到,获得积分10
18秒前
活力的小猫咪完成签到 ,获得积分10
19秒前
伟航完成签到,获得积分10
20秒前
21秒前
眠眠冰发布了新的文献求助10
21秒前
出过门发布了新的文献求助10
25秒前
豌豆发布了新的文献求助10
26秒前
压缩完成签到,获得积分10
28秒前
ryanfeng完成签到,获得积分10
28秒前
29秒前
xmf发布了新的文献求助10
30秒前
ding应助豌豆采纳,获得10
31秒前
王某完成签到 ,获得积分10
31秒前
ying818k完成签到 ,获得积分10
33秒前
科研通AI40应助ydj采纳,获得20
34秒前
35秒前
贾明灵完成签到,获得积分10
38秒前
38秒前
lcc完成签到 ,获得积分10
38秒前
zsc668完成签到 ,获得积分10
39秒前
nv完成签到,获得积分10
40秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471318
求助须知:如何正确求助?哪些是违规求助? 3064297
关于积分的说明 9087965
捐赠科研通 2755001
什么是DOI,文献DOI怎么找? 1511724
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423