Electroencephalography-Derived Prognosis of Functional Recovery in Acute Stroke Through Machine Learning Approaches

脑电图 计算机科学 冲程(发动机) 人工智能 物理医学与康复 机器学习 医学 心理学 支持向量机 神经科学 机械工程 工程类
作者
Antonio Maria Chiarelli,Pierpaolo Croce,Giovanni Assenza,Arcangelo Merla,Giuseppe Granata,Nadia Mariagrazia Giannantoni,Vittorio Pizzella,Franca Tecchio,Filippo Zappasodi
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:30 (12): 2050067-2050067 被引量:26
标识
DOI:10.1142/s0129065720500677
摘要

Stroke, if not lethal, is a primary cause of disability. Early assessment of markers of recovery can allow personalized interventions; however, it is difficult to deliver indexes in the acute phase able to predict recovery. In this perspective, evaluation of electrical brain activity may provide useful information. A machine learning approach was explored here to predict post-stroke recovery relying on multi-channel electroencephalographic (EEG) recordings of few minutes performed at rest. A data-driven model, based on partial least square (PLS) regression, was trained on 19-channel EEG recordings performed within 10 days after mono-hemispheric stroke in 101 patients. The band-wise (delta: 1-4[Formula: see text]Hz, theta: 4-7[Formula: see text]Hz, alpha: 8-14[Formula: see text]Hz and beta: 15-30[Formula: see text]Hz) EEG effective powers were used as features to predict the recovery at 6 months (based on clinical status evaluated through the NIH Stroke Scale, NIHSS) in an optimized and cross-validated framework. In order to exploit the multimodal contribution to prognosis, the EEG-based prediction of recovery was combined with NIHSS scores in the acute phase and both were fed to a nonlinear support vector regressor (SVR). The prediction performance of EEG was at least as good as that of the acute clinical status scores. A posteriori evaluation of the features exploited by the analysis highlighted a lower delta and higher alpha activity in patients showing a positive outcome, independently of the affected hemisphere. The multimodal approach showed better prediction capabilities compared to the acute NIHSS scores alone ([Formula: see text] versus [Formula: see text], AUC = 0.80 versus AUC = 0.70, [Formula: see text]). The multimodal and multivariate model can be used in acute phase to infer recovery relying on standard EEG recordings of few minutes performed at rest together with clinical assessment, to be exploited for early and personalized therapies. The easiness of performing EEG may allow such an approach to become a standard-of-care and, thanks to the increasing number of labeled samples, further improving the model predictive power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
zh关闭了zh文献求助
4秒前
雨衣完成签到,获得积分10
4秒前
休思完成签到 ,获得积分10
6秒前
情怀应助wang采纳,获得10
6秒前
6秒前
雨衣发布了新的文献求助10
10秒前
曾水发布了新的文献求助10
10秒前
sy2001发布了新的文献求助10
10秒前
FashionBoy应助feifei采纳,获得10
11秒前
Tera完成签到,获得积分10
12秒前
刘旺林完成签到,获得积分10
15秒前
15秒前
暴躁的访波完成签到,获得积分10
19秒前
小蘑菇发布了新的文献求助10
20秒前
FY完成签到,获得积分10
23秒前
23秒前
feifei发布了新的文献求助10
26秒前
英姑应助Li采纳,获得10
27秒前
31秒前
cq_2完成签到,获得积分10
33秒前
彭凯发布了新的文献求助10
36秒前
00完成签到,获得积分10
38秒前
豆笑笑完成签到,获得积分10
38秒前
38秒前
淡淡的元霜完成签到,获得积分10
39秒前
43秒前
43秒前
靓丽寄文完成签到 ,获得积分10
45秒前
加油发布了新的文献求助10
45秒前
Li发布了新的文献求助10
47秒前
一颗树发布了新的文献求助100
48秒前
LCFXR发布了新的文献求助10
49秒前
yls完成签到,获得积分10
51秒前
烟花应助努努力采纳,获得10
52秒前
丘比特应助加油采纳,获得10
52秒前
风趣的芝麻完成签到 ,获得积分10
55秒前
Progie应助科研通管家采纳,获得10
58秒前
田様应助科研通管家采纳,获得10
58秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378605
求助须知:如何正确求助?哪些是违规求助? 2994131
关于积分的说明 8757924
捐赠科研通 2678644
什么是DOI,文献DOI怎么找? 1467343
科研通“疑难数据库(出版商)”最低求助积分说明 678635
邀请新用户注册赠送积分活动 670229