亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale

环境科学 遥感 中分辨率成像光谱仪 土地覆盖 归一化差异植被指数 含水量 数据同化 植被(病理学) 图像分辨率 卫星 叶面积指数 气象学 土地利用 地质学 地理 计算机科学 工程类 病理 航空航天工程 土木工程 人工智能 岩土工程 生物 医学 生态学
作者
Ahmed Samir Abowarda,Liangliang Bai,Caijin Zhang,Di Long,Xueying Li,Qi Huang,Zhangli Sun
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:255: 112301-112301 被引量:191
标识
DOI:10.1016/j.rse.2021.112301
摘要

Soil moisture has a considerable impact on the hydrological cycle, runoff generation, drought development, and water resources management. Soil moisture products provided by passive microwave remote sensing possess coarse spatial resolutions ranging from 25 to 50 km, unable to reflect large spatial heterogeneity in soil moisture caused by complex interactions among meteorological forcing, land cover, and topography. Meanwhile, active microwave remote sensing can provide higher spatial resolution than passive sensors that may reach 1 km but with lower temporal resolution of 6–12 days (e.g., Sentinel-1). Better water resources management, particularly for the agricultural sector, requires spatiotemporally continuous soil moisture estimates at the field scale (e.g., 30 m × 30 m) to reflect its high spatiotemporal variability across heterogeneous land surfaces. In this study, both data fusion and random forest models along with a range of remote sensing, reanalysis, and in situ data were jointly used to generate spatiotemporally continuous surface soil moisture (SSM) at 30 m × 30 m. First, both daily normalized difference vegetation index (NDVI) and surface albedo at 30 m × 30 m were generated by fusing reflectance products of the MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat. Second, China Meteorological Administration Land Data Assimilation System (CLDAS, 0.0625° × 0.0625°) land surface temperature (LST) was fused with both MODIS LST and Landsat LST to generate spatially complete LST maps (at 11 a.m. local solar time for each day) at 30 m × 30 m. Last, random forest models were developed to generate spatiotemporally continuous SSM of 30 m × 30 m using the fused variables at fine spatial resolution (e.g., NDVI, surface albedo, and LST), SSM background fields, and ancillary variables such as precipitation and soil texture as the model inputs. Compared with original SSM of the European Space Agency (ESA) Climate Change Initiative (CCI) Version 4.4 SSM, Soil Moisture Active Passive (SMAP) Level-4 SSM, and CLDAS SSM, the downscaled SSM using these products as background fields was improved significantly in terms of accuracy and spatial distribution. Moreover, the integration of multiple SSM background fields improved the performance of the downscaled SSM significantly in terms of spatiotemporal consistency and accuracy compared with that using a single SSM background field. Overall, the downscaled SMAP_L4 + CLDAS SSM showed the best performance at four sites (i.e., Weishan, Huailai, Hujiatan, and Paihuai) out of seven sites on the North China Plain with R, bias, MAE, RMSE, and ubRMSE ranging from 0.70–0.84, −0.034–0.012 cm3/cm3, 0.025–0.044 cm3/cm3, 0.031–0.050 cm3/cm3, and 0.022–0.042 cm3/cm3, respectively. The proposed framework maximizes the potential of data fusion, random forest models, and in situ data in deriving spatiotemporally continuous SSM estimates at 30 m × 30 m, which should be valuable for water resources management at the field scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charliechen完成签到 ,获得积分10
18秒前
心随以动完成签到 ,获得积分10
1分钟前
充电宝应助kyt采纳,获得10
1分钟前
难过的钥匙完成签到 ,获得积分10
1分钟前
修辛完成签到 ,获得积分10
1分钟前
眼睛大的尔竹完成签到 ,获得积分10
1分钟前
1分钟前
kyt发布了新的文献求助10
1分钟前
科研通AI5应助张清采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得30
1分钟前
1分钟前
张清发布了新的文献求助10
1分钟前
高海龙完成签到,获得积分10
1分钟前
2分钟前
思源应助不要命的皮卡丘采纳,获得30
2分钟前
2分钟前
香蕉觅云应助成社长采纳,获得10
2分钟前
点心完成签到,获得积分10
2分钟前
2分钟前
成社长发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
joe完成签到 ,获得积分0
3分钟前
852应助pollen采纳,获得10
4分钟前
犹豫的代芙完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
饱满书雁发布了新的文献求助10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
不要命的皮卡丘完成签到,获得积分10
5分钟前
科研通AI5应助张清采纳,获得10
5分钟前
尤尢应助饱满书雁采纳,获得10
5分钟前
6分钟前
张清发布了新的文献求助10
6分钟前
桥桥乔乔完成签到 ,获得积分10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562017
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412566
捐赠科研通 2835932
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716865