Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study

医学 逻辑回归 队列 临床试验 前瞻性队列研究 急诊医学 队列研究 统计的 2019年冠状病毒病(COVID-19) 内科学 疾病 统计 数学 传染病(医学专业)
作者
Gupta Rk,Ewen M Harrison,Antonia Ho,Annemarie B Docherty,Stephen R Knight,Maarten van Smeden,Ibrahim Abubakar,Marc Lipman,Matteo Quartagno,Riinu Pius,Iain Buchan,Gail Carson,Thomas M Drake,Jake Dunning,Cameron J Fairfield,Carrol Gamble,Christopher Green,Sophie Halpin,Hayley Hardwick,Karl Holden,Peter Horby,Clare Jackson,Kenneth A McLean,Laura Merson,Jonathan S Nguyen‐Van‐Tam,Lisa Norman,Piero Olliaro,Mark G Pritchard,Clark D Russell,James Scott-Brown,Catherine Shaw,Aziz Sheikh,Tom Solomon,Cathie Sudlow,Olivia Swann,Lance Turtle,Peter Openshaw,J Kenneth Baillie,Malcolm G Semple,Mahdad Noursadeghi,Isaric C Investigators
出处
期刊:The Lancet Respiratory Medicine [Elsevier]
卷期号:9 (4): 349-359 被引量:167
标识
DOI:10.1016/s2213-2600(20)30559-2
摘要

Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions.We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal-external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London).74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal-external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [-0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than any other reproducible prognostic model.The 4C Deterioration model has strong potential for clinical utility and generalisability to predict clinical deterioration and inform decision making among adults hospitalised with COVID-19.National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
paixxxxx发布了新的文献求助10
1秒前
bkagyin应助张头发采纳,获得10
1秒前
llj完成签到,获得积分10
2秒前
3秒前
Christ完成签到 ,获得积分10
3秒前
野子完成签到,获得积分10
3秒前
null应助你好采纳,获得10
3秒前
Morch2021发布了新的文献求助10
3秒前
3秒前
3秒前
orixero应助绵绵采纳,获得10
3秒前
3秒前
丁帅发布了新的文献求助20
4秒前
liang发布了新的文献求助10
4秒前
zzz发布了新的文献求助10
4秒前
5秒前
万金油完成签到,获得积分10
5秒前
传奇3应助容二遥采纳,获得10
5秒前
Mathea完成签到,获得积分10
5秒前
llj发布了新的文献求助10
6秒前
7秒前
JamesPei应助William鉴哲采纳,获得10
7秒前
科研大捞发布了新的文献求助10
8秒前
今后应助嘛吉采纳,获得10
8秒前
yyyyyyyyy发布了新的文献求助10
8秒前
8秒前
迪亚士的好望角完成签到,获得积分20
8秒前
JoymeansU完成签到,获得积分10
8秒前
9秒前
9秒前
11完成签到 ,获得积分10
9秒前
端庄向雁发布了新的文献求助10
10秒前
整箱完成签到 ,获得积分10
10秒前
喵咪发布了新的文献求助10
10秒前
10秒前
11秒前
Nancy完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785