Novel and Predictive QSAR Model for Steroidal and Nonsteroidal 5α- Reductase Type II Inhibitors

数量结构-活动关系 线性回归 分子描述符 化学 线性模型 机器学习 立体化学 计算机科学
作者
Huda Mando,Ahmad Hassan,Sajjad Gharaghani
出处
期刊:Current Drug Discovery Technologies [Bentham Science Publishers]
标识
DOI:10.2174/1570163817666200324170457
摘要

In this study, a novel quantitative structure activity relationship (QSAR) model has been developed for inhibitors of human 5-alpha reductase type II, which are used to treat benign prostate hypertrophy (BPH).The dataset consisted of 113 compounds-mainly nonsteroidal-with known inhibitory concentration. Then 3D structures of compounds were optimized and molecular structure descriptors were calculated. The stepwise multiple linear regression was used to select descriptors encoding the inhibitory activity of the compounds. Multiple linear regression (MLR) was used to build up the linear QSAR model.The results obtained revealed that the descriptors which best describe the activity were atom type electropological state, carbon type, radial distribution function (RDF), barysz matrix and molecular linear free energy relation. The suggested model could achieve satisfied square correlation coefficient of R2 = 0.72, higher than of many previous studies, indicating its superiority. Rigid validation criteria were met using external data with Q2 ˃ 0.5 and R2 = 0.75, reflecting the predictive power of the model.The QSAR model was applied for screening botanical components of herbal preparations used to treat BPH, and could predict the activity of some, among others, making reasonable attribution to the proposed effect of these preparations. Gamma tocopherol was found to be an active inhibitor, in consistence with many previous studies, anticipating the power of this model in the prediction of new candidate molecules and suggesting further investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mou发布了新的文献求助10
刚刚
曼夭非夭完成签到,获得积分10
刚刚
呵呵完成签到,获得积分10
2秒前
wm发布了新的文献求助10
2秒前
Claudplz完成签到,获得积分10
3秒前
HHHWJ完成签到 ,获得积分10
3秒前
EmmaLin完成签到,获得积分10
4秒前
cyx完成签到,获得积分20
4秒前
奋斗的不言完成签到,获得积分10
5秒前
nino完成签到,获得积分0
6秒前
千筹完成签到,获得积分10
6秒前
Wmin完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Leslie完成签到,获得积分10
7秒前
catch完成签到,获得积分10
7秒前
mou完成签到,获得积分10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得50
10秒前
cdercder应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
cdercder应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
Momomo应助科研通管家采纳,获得20
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703