重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Real-time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing

手势 手势识别 计算机科学 隐马尔可夫模型 人工智能 语音识别
作者
Haipeng Liu,Yuheng Wang,Anfu Zhou,Hanyue He,Wei Wang,Kunpeng Wang,Peilin Pan,Yixuan Lu,Liang Liu,Huadóng Ma
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:4 (4): 1-28 被引量:92
标识
DOI:10.1145/3432235
摘要

"In air" gesture recognition using millimeter wave (mmWave) radar and its applications in natural human-computer-interaction for smart home has shown its potential. However, the state-of-the-art works still fall short in terms of limited gesture space, vulnerable to surrounding interference, and off-line recognition. In this paper, we propose mHomeGes, a real-time mmWave arm gesture recognition system for practical smart home-usage. To this end, we first distill arm gesture's position and dynamic variation, and then custom-design a lightweight convolution neural network to recognize fine-grained gestures. Next, we propose a user discovery method to focus on the target human gesture, thus eliminating the adverse impact of surrounding interference. Finally, we design a hidden Markov model-based voting mechanism to handle continuous gesture signals at run-time, which leads to continuous gesture recognition in real-time. We implement mHomeGes on a commodity mmWave radar and also perform a user study, which demonstrates that mHomeGes achieves high recognition accuracy above 95.30% in real-time across various smart home scenarios, regardless of the impact of surrounding movements, concurrent gestures, human physiological conditions, and outer packing materials. Moreover, we have also publicly archived a mmWave gesture data-set collected during developing mHomeGes, which consists of about 22,000 instances from 25 persons and may have an independent value of facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助1128采纳,获得10
刚刚
英俊的铭应助我是聪聪呦采纳,获得10
刚刚
刚刚
刚刚
库儿拉索发布了新的文献求助10
刚刚
小蘑菇应助aaxs采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
Eric完成签到,获得积分10
1秒前
123发布了新的文献求助10
3秒前
日落收藏家完成签到 ,获得积分10
3秒前
夏无极发布了新的文献求助10
3秒前
3秒前
无花果应助临澈采纳,获得10
4秒前
完美世界应助jingluo采纳,获得10
4秒前
丘比特应助LXL采纳,获得10
5秒前
SCI发布了新的文献求助10
5秒前
ggboy完成签到,获得积分20
6秒前
小白完成签到,获得积分10
6秒前
6秒前
6秒前
左一酱发布了新的文献求助10
6秒前
三橋gzzzzz完成签到,获得积分10
8秒前
包容翰完成签到,获得积分10
8秒前
8秒前
碧蓝豁完成签到,获得积分10
8秒前
8秒前
avalanche应助整齐麦片采纳,获得50
9秒前
赣南橙完成签到,获得积分10
9秒前
9秒前
酷波er应助cc采纳,获得10
10秒前
10秒前
10秒前
Owen应助美好斓采纳,获得10
10秒前
11秒前
11秒前
付2完成签到 ,获得积分10
12秒前
顾矜应助123采纳,获得10
12秒前
蚊蚊爱读书给cy的求助进行了留言
12秒前
Taisheng完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516