Real-time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing

手势 手势识别 计算机科学 隐马尔可夫模型 人工智能 语音识别
作者
Haipeng Liu,Yuheng Wang,Anfu Zhou,Hanyue He,Wei Wang,Kunpeng Wang,Peilin Pan,Yixuan Lu,Liang Liu,Huadóng Ma
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:4 (4): 1-28 被引量:92
标识
DOI:10.1145/3432235
摘要

"In air" gesture recognition using millimeter wave (mmWave) radar and its applications in natural human-computer-interaction for smart home has shown its potential. However, the state-of-the-art works still fall short in terms of limited gesture space, vulnerable to surrounding interference, and off-line recognition. In this paper, we propose mHomeGes, a real-time mmWave arm gesture recognition system for practical smart home-usage. To this end, we first distill arm gesture's position and dynamic variation, and then custom-design a lightweight convolution neural network to recognize fine-grained gestures. Next, we propose a user discovery method to focus on the target human gesture, thus eliminating the adverse impact of surrounding interference. Finally, we design a hidden Markov model-based voting mechanism to handle continuous gesture signals at run-time, which leads to continuous gesture recognition in real-time. We implement mHomeGes on a commodity mmWave radar and also perform a user study, which demonstrates that mHomeGes achieves high recognition accuracy above 95.30% in real-time across various smart home scenarios, regardless of the impact of surrounding movements, concurrent gestures, human physiological conditions, and outer packing materials. Moreover, we have also publicly archived a mmWave gesture data-set collected during developing mHomeGes, which consists of about 22,000 instances from 25 persons and may have an independent value of facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助元正采纳,获得10
1秒前
不过尔尔发布了新的文献求助10
1秒前
迷失的悠悠完成签到,获得积分10
1秒前
水蔓菁发布了新的文献求助30
2秒前
蒋复天发布了新的文献求助10
2秒前
sunshine发布了新的文献求助10
3秒前
xxx完成签到,获得积分10
3秒前
kkkkki完成签到,获得积分10
3秒前
gan发布了新的文献求助10
4秒前
从容的念柏完成签到,获得积分10
4秒前
4秒前
Aaron完成签到 ,获得积分10
4秒前
5秒前
江流石不转完成签到 ,获得积分10
5秒前
在水一方应助lizzy采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
魔芋不爽完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
xiaotong发布了新的文献求助10
9秒前
Paradox完成签到,获得积分10
10秒前
马户牙发布了新的文献求助10
10秒前
李里哩发布了新的文献求助10
12秒前
pu发布了新的文献求助10
12秒前
arnoan发布了新的文献求助10
12秒前
王敬顺完成签到,获得积分0
12秒前
犬饲发布了新的文献求助10
12秒前
学术laji发布了新的文献求助10
12秒前
盲点发布了新的文献求助10
13秒前
李健的小迷弟应助wsd采纳,获得10
14秒前
天天快乐应助光亮的元容采纳,获得10
14秒前
斯文123发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049