Real-time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing

手势 手势识别 计算机科学 隐马尔可夫模型 人工智能 语音识别
作者
Haipeng Liu,Yuheng Wang,Anfu Zhou,Hanyue He,Wei Wang,Kunpeng Wang,Peilin Pan,Yixuan Lu,Liang Liu,Huadóng Ma
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:4 (4): 1-28 被引量:92
标识
DOI:10.1145/3432235
摘要

"In air" gesture recognition using millimeter wave (mmWave) radar and its applications in natural human-computer-interaction for smart home has shown its potential. However, the state-of-the-art works still fall short in terms of limited gesture space, vulnerable to surrounding interference, and off-line recognition. In this paper, we propose mHomeGes, a real-time mmWave arm gesture recognition system for practical smart home-usage. To this end, we first distill arm gesture's position and dynamic variation, and then custom-design a lightweight convolution neural network to recognize fine-grained gestures. Next, we propose a user discovery method to focus on the target human gesture, thus eliminating the adverse impact of surrounding interference. Finally, we design a hidden Markov model-based voting mechanism to handle continuous gesture signals at run-time, which leads to continuous gesture recognition in real-time. We implement mHomeGes on a commodity mmWave radar and also perform a user study, which demonstrates that mHomeGes achieves high recognition accuracy above 95.30% in real-time across various smart home scenarios, regardless of the impact of surrounding movements, concurrent gestures, human physiological conditions, and outer packing materials. Moreover, we have also publicly archived a mmWave gesture data-set collected during developing mHomeGes, which consists of about 22,000 instances from 25 persons and may have an independent value of facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助elizabeth339采纳,获得50
刚刚
刚刚
vixerunt发布了新的文献求助10
刚刚
安静的十八完成签到,获得积分10
1秒前
cyr完成签到,获得积分10
1秒前
1秒前
科研通AI6应助皮卡丘比特采纳,获得10
1秒前
2秒前
lhxing完成签到,获得积分10
2秒前
从容仙人完成签到,获得积分10
2秒前
bobo完成签到,获得积分10
2秒前
满意外套完成签到,获得积分10
2秒前
3秒前
可爱的弘文完成签到,获得积分20
4秒前
相由心生发布了新的文献求助10
4秒前
Czt完成签到,获得积分10
5秒前
欢呼南晴发布了新的文献求助10
5秒前
shinian发布了新的文献求助10
5秒前
浮游应助lijianguo采纳,获得10
6秒前
7秒前
知来者完成签到,获得积分10
7秒前
科研通AI5应助皮卡丘比特采纳,获得10
7秒前
li发布了新的文献求助10
8秒前
青木发布了新的文献求助10
9秒前
百里幻翠完成签到 ,获得积分10
10秒前
小雕完成签到,获得积分10
10秒前
充电宝应助无限猫咪采纳,获得10
11秒前
123完成签到,获得积分20
12秒前
盼柳完成签到,获得积分20
13秒前
CodeCraft应助藕包采纳,获得10
13秒前
哦萨尔完成签到 ,获得积分10
14秒前
123完成签到,获得积分10
14秒前
15秒前
15秒前
Akim应助red采纳,获得10
16秒前
16秒前
科研牛马完成签到,获得积分10
17秒前
相由心生完成签到,获得积分10
17秒前
称心妙竹应助盼柳采纳,获得30
17秒前
莉莉完成签到,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213838
求助须知:如何正确求助?哪些是违规求助? 4389433
关于积分的说明 13667096
捐赠科研通 4250632
什么是DOI,文献DOI怎么找? 2332136
邀请新用户注册赠送积分活动 1329805
关于科研通互助平台的介绍 1283453