Real-time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing

手势 手势识别 计算机科学 隐马尔可夫模型 人工智能 语音识别 计算机视觉
作者
Haipeng Liu,Yuheng Wang,Anfu Zhou,Hanyue He,Wei Wang,Kunpeng Wang,Peilin Pan,Yixuan Lu,Liang Liu,Huadóng Ma
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:4 (4): 1-28 被引量:65
标识
DOI:10.1145/3432235
摘要

"In air" gesture recognition using millimeter wave (mmWave) radar and its applications in natural human-computer-interaction for smart home has shown its potential. However, the state-of-the-art works still fall short in terms of limited gesture space, vulnerable to surrounding interference, and off-line recognition. In this paper, we propose mHomeGes, a real-time mmWave arm gesture recognition system for practical smart home-usage. To this end, we first distill arm gesture's position and dynamic variation, and then custom-design a lightweight convolution neural network to recognize fine-grained gestures. Next, we propose a user discovery method to focus on the target human gesture, thus eliminating the adverse impact of surrounding interference. Finally, we design a hidden Markov model-based voting mechanism to handle continuous gesture signals at run-time, which leads to continuous gesture recognition in real-time. We implement mHomeGes on a commodity mmWave radar and also perform a user study, which demonstrates that mHomeGes achieves high recognition accuracy above 95.30% in real-time across various smart home scenarios, regardless of the impact of surrounding movements, concurrent gestures, human physiological conditions, and outer packing materials. Moreover, we have also publicly archived a mmWave gesture data-set collected during developing mHomeGes, which consists of about 22,000 instances from 25 persons and may have an independent value of facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
inshialla发布了新的文献求助10
刚刚
热心的寒松完成签到,获得积分20
1秒前
momo完成签到,获得积分10
1秒前
顺利涵菡发布了新的文献求助10
1秒前
bo发布了新的文献求助10
2秒前
Oying发布了新的文献求助10
2秒前
无花果应助罗向南采纳,获得10
3秒前
4秒前
orixero应助zhangxr采纳,获得10
4秒前
5秒前
852应助甜橙子采纳,获得10
6秒前
杨秋月完成签到,获得积分10
7秒前
小马甲应助mendy采纳,获得10
7秒前
温暖的思烟给温暖的思烟的求助进行了留言
8秒前
肖申克的舅叔完成签到,获得积分10
8秒前
RPG发布了新的文献求助10
9秒前
Vera完成签到 ,获得积分10
9秒前
科目三应助湘江雨采纳,获得10
9秒前
9秒前
11秒前
12秒前
13秒前
乐乐应助小橘采纳,获得10
13秒前
冷傲的咖啡豆完成签到,获得积分10
14秒前
谭你脑瓜崩完成签到,获得积分10
14秒前
14秒前
李爱国应助zhangxr采纳,获得10
15秒前
15秒前
15秒前
miao发布了新的文献求助10
17秒前
威武芝发布了新的文献求助10
17秒前
17秒前
罗向南发布了新的文献求助10
17秒前
李健的小迷弟应助至期采纳,获得10
18秒前
耀学菜菜发布了新的文献求助10
18秒前
甜橙子发布了新的文献求助10
18秒前
华仔应助震震采纳,获得10
19秒前
mendy完成签到,获得积分10
19秒前
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542