亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing

手势 手势识别 计算机科学 隐马尔可夫模型 人工智能 语音识别
作者
Haipeng Liu,Yuheng Wang,Anfu Zhou,Hanyue He,Wei Wang,Kunpeng Wang,Peilin Pan,Yixuan Lu,Liang Liu,Huadóng Ma
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:4 (4): 1-28 被引量:92
标识
DOI:10.1145/3432235
摘要

"In air" gesture recognition using millimeter wave (mmWave) radar and its applications in natural human-computer-interaction for smart home has shown its potential. However, the state-of-the-art works still fall short in terms of limited gesture space, vulnerable to surrounding interference, and off-line recognition. In this paper, we propose mHomeGes, a real-time mmWave arm gesture recognition system for practical smart home-usage. To this end, we first distill arm gesture's position and dynamic variation, and then custom-design a lightweight convolution neural network to recognize fine-grained gestures. Next, we propose a user discovery method to focus on the target human gesture, thus eliminating the adverse impact of surrounding interference. Finally, we design a hidden Markov model-based voting mechanism to handle continuous gesture signals at run-time, which leads to continuous gesture recognition in real-time. We implement mHomeGes on a commodity mmWave radar and also perform a user study, which demonstrates that mHomeGes achieves high recognition accuracy above 95.30% in real-time across various smart home scenarios, regardless of the impact of surrounding movements, concurrent gestures, human physiological conditions, and outer packing materials. Moreover, we have also publicly archived a mmWave gesture data-set collected during developing mHomeGes, which consists of about 22,000 instances from 25 persons and may have an independent value of facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛哥还是强啊完成签到 ,获得积分10
10秒前
13秒前
16秒前
sheadenchu发布了新的文献求助10
19秒前
29秒前
47秒前
丘比特应助科研通管家采纳,获得10
47秒前
56秒前
Wang完成签到 ,获得积分20
1分钟前
YifanWang完成签到,获得积分0
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
万能图书馆应助CC采纳,获得30
3分钟前
科目三应助沉醉的中国钵采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
磷酸丙糖异构酶完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助雪山飞龙采纳,获得10
3分钟前
lanxinge完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
wanci应助科研通管家采纳,获得50
4分钟前
量子星尘发布了新的文献求助10
4分钟前
pjjpk01完成签到,获得积分10
4分钟前
4分钟前
CC发布了新的文献求助30
5分钟前
矜持完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
激动的55完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
搜集达人应助车哥爱学习采纳,获得10
7分钟前
7分钟前
所所应助CC采纳,获得30
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622275
求助须知:如何正确求助?哪些是违规求助? 4707334
关于积分的说明 14939084
捐赠科研通 4770272
什么是DOI,文献DOI怎么找? 2552277
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475085