Real-time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing

手势 手势识别 计算机科学 隐马尔可夫模型 人工智能 语音识别
作者
Haipeng Liu,Yuheng Wang,Anfu Zhou,Hanyue He,Wei Wang,Kunpeng Wang,Peilin Pan,Yixuan Lu,Liang Liu,Huadóng Ma
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:4 (4): 1-28 被引量:92
标识
DOI:10.1145/3432235
摘要

"In air" gesture recognition using millimeter wave (mmWave) radar and its applications in natural human-computer-interaction for smart home has shown its potential. However, the state-of-the-art works still fall short in terms of limited gesture space, vulnerable to surrounding interference, and off-line recognition. In this paper, we propose mHomeGes, a real-time mmWave arm gesture recognition system for practical smart home-usage. To this end, we first distill arm gesture's position and dynamic variation, and then custom-design a lightweight convolution neural network to recognize fine-grained gestures. Next, we propose a user discovery method to focus on the target human gesture, thus eliminating the adverse impact of surrounding interference. Finally, we design a hidden Markov model-based voting mechanism to handle continuous gesture signals at run-time, which leads to continuous gesture recognition in real-time. We implement mHomeGes on a commodity mmWave radar and also perform a user study, which demonstrates that mHomeGes achieves high recognition accuracy above 95.30% in real-time across various smart home scenarios, regardless of the impact of surrounding movements, concurrent gestures, human physiological conditions, and outer packing materials. Moreover, we have also publicly archived a mmWave gesture data-set collected during developing mHomeGes, which consists of about 22,000 instances from 25 persons and may have an independent value of facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LONGzhi发布了新的文献求助10
1秒前
fj关闭了fj文献求助
1秒前
1秒前
lalla发布了新的文献求助10
1秒前
我是老大应助黄垚采纳,获得10
1秒前
行走的材科基完成签到,获得积分20
1秒前
1秒前
haimaisi完成签到,获得积分10
1秒前
酷酷海白发布了新的文献求助10
2秒前
2秒前
2秒前
暗月皇发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
3秒前
zyzy1996完成签到,获得积分20
3秒前
小二郎应助TBLS采纳,获得10
4秒前
张铃仪发布了新的文献求助10
4秒前
徐硕发布了新的文献求助10
4秒前
dida完成签到,获得积分10
5秒前
5秒前
啦啦啦啦发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
可爱的函函应助杨沛采纳,获得10
6秒前
7秒前
7秒前
赵永刚发布了新的文献求助10
7秒前
sjll完成签到,获得积分10
7秒前
隐形曼青应助Guo采纳,获得10
7秒前
7秒前
文献狗发布了新的文献求助10
8秒前
CodeCraft应助粲妈采纳,获得10
8秒前
shijiu完成签到,获得积分10
8秒前
象牙塔与人间世完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
在佛山敲编钟的柠檬完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807