Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs

置信区间 估计员 数学 统计 稳健置信区间 回归不连续设计 多项式回归 置信分布 非参数统计 基于CDF的非参数置信区间 协变量 线性回归 算法 覆盖概率
作者
Sebastián Calónico,Matias D. Cattaneo,Rocío Titiunik
出处
期刊:Econometrica [Wiley]
卷期号:82 (6): 2295-2326 被引量:2666
标识
DOI:10.3982/ecta11757
摘要

In the regression-discontinuity (RD) design, units are assigned to treatment based on whether their value of an observed covariate exceeds a known cutoff. In this design, local polynomial estimators are now routinely employed to construct confidence intervals for treatment effects. The performance of these confidence intervals in applications, however, may be seriously hampered by their sensitivity to the specific bandwidth employed. Available bandwidth selectors typically yield a "large" bandwidth, leading to data-driven confidence intervals that may be biased, with empirical coverage well below their nominal target. We propose new theory-based, more robust confidence interval estimators for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD, and fuzzy kink RD designs. Our proposed confidence intervals are constructed using a bias-corrected RD estimator together with a novel standard error estimator. For practical implementation, we discuss mean squared error optimal bandwidths, which are by construction not valid for conventional confidence intervals but are valid with our robust approach, and consistent standard error estimators based on our new variance formulas. In a special case of practical interest, our procedure amounts to running a quadratic instead of a linear local regression. More generally, our results give a formal justification to simple inference procedures based on increasing the order of the local polynomial estimator employed. We find in a simulation study that our confidence intervals exhibit close-to-correct empirical coverage and good empirical interval length on average, remarkably improving upon the alternatives available in the literature. All results are readily available in R and STATA using our companion software packages described in Calonico, Cattaneo, and Titiunik (2014d, 2014b).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大智若愚骨头完成签到,获得积分10
刚刚
科研go完成签到,获得积分10
1秒前
柠檬杨完成签到,获得积分10
2秒前
沉静问芙完成签到 ,获得积分10
2秒前
2秒前
酷酷的贝总完成签到,获得积分10
3秒前
房东家的猫完成签到,获得积分10
4秒前
邹佳林完成签到,获得积分10
8秒前
落霞与孤鹜齐飞完成签到,获得积分10
8秒前
8秒前
研究牲exe完成签到,获得积分10
9秒前
小杭76应助zeng采纳,获得10
9秒前
10秒前
科研圣体完成签到,获得积分10
10秒前
yn完成签到 ,获得积分10
10秒前
11秒前
李大侠完成签到,获得积分10
12秒前
专一的访文完成签到 ,获得积分10
12秒前
XS_QI完成签到 ,获得积分10
16秒前
16秒前
gg完成签到,获得积分10
17秒前
jos完成签到,获得积分10
18秒前
车厘子完成签到 ,获得积分10
21秒前
刘富宇完成签到 ,获得积分10
21秒前
研友_85YNe8发布了新的文献求助30
22秒前
FYX完成签到 ,获得积分10
26秒前
Atlantis完成签到,获得积分10
27秒前
小杭76应助zeng采纳,获得10
28秒前
脆皮小小酥完成签到 ,获得积分10
30秒前
suwan发布了新的文献求助10
31秒前
大方百招完成签到,获得积分10
31秒前
sophia完成签到 ,获得积分0
32秒前
LY0430完成签到 ,获得积分10
32秒前
滕皓轩发布了新的文献求助50
35秒前
36秒前
37秒前
ys完成签到 ,获得积分10
38秒前
lmy完成签到 ,获得积分10
38秒前
彭a完成签到,获得积分10
41秒前
CCF完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294096
求助须知:如何正确求助?哪些是违规求助? 4444039
关于积分的说明 13832022
捐赠科研通 4328044
什么是DOI,文献DOI怎么找? 2375902
邀请新用户注册赠送积分活动 1371202
关于科研通互助平台的介绍 1336276