Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs

置信区间 估计员 数学 统计 稳健置信区间 回归不连续设计 多项式回归 置信分布 非参数统计 基于CDF的非参数置信区间 协变量 线性回归 算法 覆盖概率
作者
Sebastián Calónico,Matias D. Cattaneo,Rocío Titiunik
出处
期刊:Econometrica [Wiley]
卷期号:82 (6): 2295-2326 被引量:2666
标识
DOI:10.3982/ecta11757
摘要

In the regression-discontinuity (RD) design, units are assigned to treatment based on whether their value of an observed covariate exceeds a known cutoff. In this design, local polynomial estimators are now routinely employed to construct confidence intervals for treatment effects. The performance of these confidence intervals in applications, however, may be seriously hampered by their sensitivity to the specific bandwidth employed. Available bandwidth selectors typically yield a "large" bandwidth, leading to data-driven confidence intervals that may be biased, with empirical coverage well below their nominal target. We propose new theory-based, more robust confidence interval estimators for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD, and fuzzy kink RD designs. Our proposed confidence intervals are constructed using a bias-corrected RD estimator together with a novel standard error estimator. For practical implementation, we discuss mean squared error optimal bandwidths, which are by construction not valid for conventional confidence intervals but are valid with our robust approach, and consistent standard error estimators based on our new variance formulas. In a special case of practical interest, our procedure amounts to running a quadratic instead of a linear local regression. More generally, our results give a formal justification to simple inference procedures based on increasing the order of the local polynomial estimator employed. We find in a simulation study that our confidence intervals exhibit close-to-correct empirical coverage and good empirical interval length on average, remarkably improving upon the alternatives available in the literature. All results are readily available in R and STATA using our companion software packages described in Calonico, Cattaneo, and Titiunik (2014d, 2014b).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiangwei发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
严明发布了新的文献求助10
3秒前
5秒前
浮游应助自然冥茗采纳,获得10
5秒前
花粉过敏发布了新的文献求助10
6秒前
脑洞疼应助犹豫晓啸采纳,获得10
7秒前
善学以致用应助张艺凡采纳,获得30
9秒前
一碗晚月完成签到,获得积分10
10秒前
y大哥略略略完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
英俊的铭应助y大哥略略略采纳,获得10
13秒前
13秒前
orixero应助minute采纳,获得10
13秒前
大力的宝川完成签到 ,获得积分10
13秒前
14秒前
14秒前
大道无痕发布了新的文献求助10
16秒前
科研通AI6应助程雯慧采纳,获得10
16秒前
16秒前
tian发布了新的文献求助10
18秒前
犹豫晓啸发布了新的文献求助10
18秒前
思源应助科研安徒生采纳,获得10
18秒前
鹤轩发布了新的文献求助10
19秒前
20秒前
20秒前
英姑应助清秀的踏歌采纳,获得10
22秒前
22秒前
shen发布了新的文献求助10
22秒前
Babe1934发布了新的文献求助10
23秒前
小刘一定能读C9博完成签到,获得积分10
23秒前
ket完成签到,获得积分10
24秒前
小太阳发布了新的文献求助10
25秒前
123发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325