自相关
数学
随机过程
光谱密度
系列(地层学)
高斯过程
统计物理学
傅里叶级数
最大熵谱估计
高斯分布
蒙特卡罗方法
随机振动
三角函数
应用数学
数学分析
振动
统计
最大熵原理
几何学
量子力学
生物
物理
古生物学
作者
Masanobu Shinozuka,George Deodatis
出处
期刊:Applied Mechanics Reviews
[ASME International]
日期:1991-04-01
卷期号:44 (4): 191-204
被引量:1145
摘要
The subject of this paper is the simulation of one-dimensional, uni-variate, stationary, Gaussian stochastic processes using the spectral representation method. Following this methodology, sample functions of the stochastic process can be generated with great computational efficiency using a cosine series formula. These sample functions accurately reflect the prescribed probabilistic characteristics of the stochastic process when the number N of the terms in the cosine series is large. The ensemble-averaged power spectral density or autocorrelation function approaches the corresponding target function as the sample size increases. In addition, the generated sample functions possess ergodic characteristics in the sense that the temporally-averaged mean value and the autocorrelation function are identical with the corresponding targets, when the averaging takes place over the fundamental period of the cosine series. The most important property of the simulated stochastic process is that it is asymptotically Gaussian as N → ∞. Another attractive feature of the method is that the cosine series formula can be numerically computed efficiently using the Fast Fourier Transform technique. The main area of application of this method is the Monte Carlo solution of stochastic problems in engineering mechanics and structural engineering. Specifically, the method has been applied to problems involving random loading (random vibration theory) and random material and geometric properties (response variability due to system stochasticity).
科研通智能强力驱动
Strongly Powered by AbleSci AI