发光
材料科学
插层(化学)
层状双氢氧化物
热液循环
氢氧化物
青色
混合材料
磺酸盐
无机化学
化学工程
纳米技术
化学
光电子学
光学
工程类
冶金
钠
物理
作者
Shuangde Li,Jun Lu,Min Wei,David G. Evans,Xue Duan
标识
DOI:10.1002/adfm.201000200
摘要
Abstract Blue luminescent hybrid materials (DDS–AQS( x %)/LDH) are successfully prepared by co‐intercalating tris(8‐hydroxyquinoline‐5‐sulfonate)aluminum anions (AQS 3− ) and dodecyl sulfonate (DDS − ) with different molar ratios into Mg–Al layered double hydroxides (LDHs) by the hydrothermal and solution co‐precipitation methods. A film of the material on a quartz substrate is obtained by the solvent evaporation method. The results show the blue luminescence is remarkably different from the pristine Na 3 AQS, which has cyan luminescence (ca. 450–470 nm vs. 495 nm). Furthermore, the hydrothermal product of DDS–AQS(66.67%)/LDH exhibits optimal luminous intensity and a significantly enhanced fluorescence lifetime. Nuclear magnetic resonance and Fourier‐transform infrared spectroscopy indicate that the cyan–blue luminescence transition is due to the isomerization of meridianal to facial AQS via ligand flip caused by a host–guest electrostatic interaction, in combination with the dispersion and pre‐intercalation effect of DDS. The hydrothermal conditions can promote a more ordered alignment of the intercalated fac ‐AQS compared with alignment in the solution state, and the rigid LDHs environment can confine the internal mobility of AQS to keep the facial configuration stable. This stability allows a facile preparation of large amounts of blue luminous powder/film, which is a new type of inorganic–organic hybrid photofunctional material.
科研通智能强力驱动
Strongly Powered by AbleSci AI