医学
伤口愈合
伤口敷料
外科
清创术(牙科)
治疗方式
生物医学工程
复合材料
材料科学
作者
Andrew Harding,Joel Gil,José Alberto Bertot Valdés,Michael Solis,Stephen C. Davis
出处
期刊:PubMed
日期:2012-09-01
卷期号:58 (9): 50-5
被引量:25
摘要
Numerous physical modalities have been used in attempts to augment the healing process, including ultrasound, low- energy light therapy, and electrical stimulation (ES). ES has been shown to benefit tissue repair in a variety of wound types, but variations in study designs, administration, and parameters render its application in clinical practice somewhat unconventional. A dressing was designed to generate an electric potential of 0.6 V to 0.7 V in the presence of moisture, thereby delivering a sustained micro-current without the need for an external power source. The purpose of this study was to examine the effects of this bio-electric dressing (BED) on deep, partial-thickness wounds using six female specific pathogen-free animals and a well established porcine model for wound healing. Wounds (10 mm x 7 mm x 0.5 mm) were created in paravertebral and thoracic areas of these animals using a specialized electrokeratome and covered with the active polyester BED and a polyurethane film dressing (n = 30) (treatment) or an inactive polyester and film dressing (n = 30). Using an epidermal migration assay, wounds were assessed daily from day 4 through day 8 post-wounding. Differences in the proportion of wounds healed were statistically significant (P <0.001) on days 5 and 6 post-wounding. These results show BED is more effective than a control dressing treatment with moisture-retentive dressings in this animal model. Controlled clinical studies are warranted to elucidate the potential clinical implications of this treatment modality.
科研通智能强力驱动
Strongly Powered by AbleSci AI