Bursty and hierarchical structure in streams

计算机科学 前提 代表(政治) 数据流挖掘 集合(抽象数据类型) 领域(数学) 类比 主题模型 理论计算机科学 排队论 比例(比率) 溪流 意义(存在) 数据挖掘 人工智能 数学 物理 哲学 政治 量子力学 程序设计语言 法学 纯数学 语言学 心理治疗师 计算机网络 政治学 心理学
作者
Jon Kleinberg
标识
DOI:10.1145/775047.775061
摘要

A fundamental problem in text data mining is to extract meaningful structure from document streams that arrive continuously over time. E-mail and news articles are two natural examples of such streams, each characterized by topics that appear, grow in intensity for a period of time, and then fade away. The published literature in a particular research field can be seen to exhibit similar phenomena over a much longer time scale. Underlying much of the text mining work in this area is the following intuitive premise --- that the appearance of a topic in a document stream is signaled by a "burst of activity," with certain features rising sharply in frequency as the topic emerges.The goal of the present work is to develop a formal approach for modeling such "bursts," in such a way that they can be robustly and efficiently identified, and can provide an organizational framework for analyzing the underlying content. The approach is based on modeling the stream using an infinite-state automaton, in which bursts appear naturally as state transitions; in some ways, it can be viewed as drawing an analogy with models from queueing theory for bursty network traffic. The resulting algorithms are highly efficient, and yield a nested representation of the set of bursts that imposes a hierarchical structure on the overall stream. Experiments with e-mail and research paper archives suggest that the resulting structures have a natural meaning in terms of the content that gave rise to them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoguo完成签到,获得积分20
1秒前
可爱的函函应助Blandwind采纳,获得10
2秒前
CallitWYW应助粗心的抽屉采纳,获得10
2秒前
元复天发布了新的文献求助10
2秒前
幸福黄豆发布了新的文献求助10
3秒前
4秒前
所所应助化鼠采纳,获得10
5秒前
TORCH完成签到 ,获得积分10
6秒前
科研通AI2S应助guajiguaji采纳,获得10
7秒前
10秒前
俊逸白云发布了新的文献求助10
10秒前
10秒前
桃也雾漫漫完成签到,获得积分10
10秒前
好远的梦完成签到,获得积分10
12秒前
方赫然应助Wk_Ye采纳,获得10
13秒前
xiaoxiao发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
小勺子完成签到,获得积分20
17秒前
qipupu222完成签到 ,获得积分10
17秒前
18秒前
18秒前
cctv18应助元复天采纳,获得10
20秒前
hhc发布了新的文献求助10
20秒前
胡恒源完成签到,获得积分20
21秒前
Lcrainy发布了新的文献求助10
21秒前
22秒前
22秒前
Pt发布了新的文献求助20
23秒前
可爱的函函应助jzhou88采纳,获得10
24秒前
xiaoxiao完成签到,获得积分10
24秒前
24秒前
乐观的雨完成签到,获得积分10
26秒前
酸色黑樱桃完成签到,获得积分10
26秒前
27秒前
不看文献会鼠完成签到,获得积分10
27秒前
28秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329176
求助须知:如何正确求助?哪些是违规求助? 2959017
关于积分的说明 8593407
捐赠科研通 2637410
什么是DOI,文献DOI怎么找? 1443494
科研通“疑难数据库(出版商)”最低求助积分说明 668742
邀请新用户注册赠送积分活动 656083