The Dynamics of Drug Discovery

药物发现 药效团 灵活性(工程) 背景(考古学) 计算生物学 变构调节 计算机科学 蛋白质动力学 小分子 分子动力学 药物设计 化学 生物信息学 生物 计算化学 受体 遗传学 古生物学 统计 数学
作者
Elisabetta Moroni,Antonella Paladino,Giorgio Colombo
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:15 (20): 2043-2055 被引量:19
标识
DOI:10.2174/1568026615666150519102950
摘要

Proteins are not static objects. To carry out their functions in the cells and participate in biochemical interaction networks, proteins have to explore different conformational substates, which favor the adaptation to different partners and ultimately allow them to respond to changes in the environment. In this paper we discuss the implications of including the atomistic description of protein dynamics and flexibility in the context of drug discovery and design. The underlying idea is that a better understanding of the atomistic details of molecular recognition phenomena and conformational cross-talk between a ligand and a receptor can in fact translate in unexplored opportunities for the discovery of new drug like molecules. We will illustrate and discuss dynamics-based pharmacophores, the discovery of cryptic binding sites, the characterization and exploitation of allosteric regulation mechanisms and the definition of potential protein-protein interaction sites as potential sources of new bases for the rational design of small molecules endowed with specific biological functions. Overall, the inclusion of protein flexibility in the drug discovery process is starting to attract attention not only in the academic but also in the industrial community. This is supported by experimental tests that prove the actual feasibility of considering the explicit dynamics of drug-protein interactions at all relevant levels of resolution and the use of multiple receptor conformations in drug discovery, as affordable complements (if not an alternative) to classical High Throughput Screening (HTS) efforts based on static structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方班术完成签到,获得积分10
2秒前
谢文强完成签到,获得积分10
4秒前
4秒前
liyang完成签到,获得积分10
4秒前
方班术发布了新的文献求助10
4秒前
科研通AI6应助默客采纳,获得10
4秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
5秒前
星海妖魂完成签到,获得积分10
5秒前
科研通AI6应助ChaiHaobo采纳,获得10
5秒前
5秒前
5秒前
orixero应助九七采纳,获得10
6秒前
研友_VZG7GZ应助柚子加冰采纳,获得10
7秒前
7秒前
xxfsx应助Noah采纳,获得10
9秒前
10秒前
keyanzhai发布了新的文献求助10
11秒前
蔓蔓要努力完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
YAOHA发布了新的文献求助10
13秒前
15秒前
15秒前
动听千山发布了新的文献求助200
15秒前
璩qu发布了新的文献求助10
17秒前
星海妖魂发布了新的文献求助10
18秒前
tovfix发布了新的文献求助10
18秒前
默客完成签到,获得积分10
19秒前
Zzzzzzz发布了新的文献求助10
20秒前
vcccc发布了新的文献求助10
20秒前
22秒前
22秒前
科研通AI6应助小白采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
25秒前
25秒前
25秒前
酷波er应助vcccc采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091