The Dynamics of Drug Discovery

药物发现 药效团 灵活性(工程) 背景(考古学) 计算生物学 变构调节 计算机科学 蛋白质动力学 小分子 分子动力学 药物设计 化学 生物信息学 生物 计算化学 受体 遗传学 统计 古生物学 数学
作者
Elisabetta Moroni,Antonella Paladino,Giorgio Colombo
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:15 (20): 2043-2055 被引量:19
标识
DOI:10.2174/1568026615666150519102950
摘要

Proteins are not static objects. To carry out their functions in the cells and participate in biochemical interaction networks, proteins have to explore different conformational substates, which favor the adaptation to different partners and ultimately allow them to respond to changes in the environment. In this paper we discuss the implications of including the atomistic description of protein dynamics and flexibility in the context of drug discovery and design. The underlying idea is that a better understanding of the atomistic details of molecular recognition phenomena and conformational cross-talk between a ligand and a receptor can in fact translate in unexplored opportunities for the discovery of new drug like molecules. We will illustrate and discuss dynamics-based pharmacophores, the discovery of cryptic binding sites, the characterization and exploitation of allosteric regulation mechanisms and the definition of potential protein-protein interaction sites as potential sources of new bases for the rational design of small molecules endowed with specific biological functions. Overall, the inclusion of protein flexibility in the drug discovery process is starting to attract attention not only in the academic but also in the industrial community. This is supported by experimental tests that prove the actual feasibility of considering the explicit dynamics of drug-protein interactions at all relevant levels of resolution and the use of multiple receptor conformations in drug discovery, as affordable complements (if not an alternative) to classical High Throughput Screening (HTS) efforts based on static structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Carpediem完成签到 ,获得积分10
1秒前
1秒前
2秒前
隐形曼青应助白衣修身采纳,获得10
3秒前
吴123完成签到,获得积分10
3秒前
4秒前
灿烂阳光下的稻田完成签到,获得积分10
4秒前
4秒前
overThat发布了新的文献求助10
7秒前
7秒前
liuyanjun发布了新的文献求助10
7秒前
星辰大海应助开朗孤云采纳,获得10
8秒前
大胆荔枝发布了新的文献求助10
9秒前
听寒发布了新的文献求助10
9秒前
Dr.向发布了新的文献求助10
10秒前
SWIM666完成签到,获得积分10
10秒前
LX完成签到,获得积分10
11秒前
王算法完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
chen完成签到,获得积分10
15秒前
15秒前
可爱的函函应助又又采纳,获得15
16秒前
JiaY完成签到,获得积分20
17秒前
呆呆完成签到,获得积分10
17秒前
17秒前
六金完成签到 ,获得积分10
17秒前
19秒前
谢慧蕴应助热爱雪球采纳,获得10
19秒前
20秒前
21秒前
21秒前
丹三完成签到 ,获得积分10
21秒前
李健应助Cherry采纳,获得10
24秒前
uuu发布了新的文献求助10
24秒前
文天发布了新的文献求助10
25秒前
25秒前
秀丽青枫完成签到 ,获得积分10
26秒前
单薄纸飞机完成签到,获得积分10
27秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342970
求助须知:如何正确求助?哪些是违规求助? 2970071
关于积分的说明 8642497
捐赠科研通 2650022
什么是DOI,文献DOI怎么找? 1451052
科研通“疑难数据库(出版商)”最低求助积分说明 672080
邀请新用户注册赠送积分活动 661391