Extraction of tree heights in mountainous natural forests from UAV leaf-on stereoscopic imagery based on approximation of ground surfaces

遥感 地形 数字高程模型 激光雷达 均方误差 树(集合论) 牙冠(牙科) 仰角(弹道) 胸径 数学 地理 地图学 统计 几何学 林业 数学分析 医学 牙科
作者
Tianyu Yu,Wenjian Ni,Jianli Liu,Ruiqi Zhao,Zhiyu Zhang,Guoqing Sun
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:293: 113613-113613 被引量:3
标识
DOI:10.1016/j.rse.2023.113613
摘要

The application of high-resolution stereoscopic imagery acquired by Unmanned Aerial Vehicle (UAV) on the extraction of forest heights has grown rapidly in recent years. Most existing studies either required auxiliary terrain data, e.g., Digital Terrain Model (DTM) provided by lidar data, or focused on flat terrains. It is still a great challenge to extract tree heights in mountainous forests only using UAV leaf-on stereoscopic imagery. An algorithm referred to as AGAR (i.e., Approximation of Ground using Allometric Relationship) is proposed in this study to estimate individual heights of visible trees on UAV stereoscopic imagery in mountainous natural forests. The central idea of the AGAR algorithm is firstly to approximate the understory terrain elevations (i.e., DTM) based on attributes of tree crowns (e.g., crown area) and the iterative adjustment of allometric equation coefficients. Then individual tree heights are determined by differencing the elevation of crown tops with that of the approximated ground surface. The proposed algorithm was demonstrated at five sites with different terrain conditions by taking field measurements and ICESat-2 data as references, respectively. Results showed that the AGAR algorithm worked well on the estimation of tree heights at all sites. In contrast, the classical progressive triangulation filter (PTF) algorithm was susceptible to terrains and forest structures. The root mean square error (RMSE) and relative RMSE (rRMSE) of tree heights estimated by the PTF algorithm were 4.4 m ∼ 6.3 m and 32.6% ∼ 37.6%, respectively. They were decreased by the AGAR algorithm to 1.7 m ∼ 2.5 m and 12.6% ∼ 15.2%, respectively. The AGAR algorithm will substantially advance the application of UAV stereoscopic imagery on the extraction of tree heights in the absence of other available terrain data, and will also open new horizons for application of decimeter or even centimeter spaceborne stereoscopic imagery on forest vertical structures in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xht发布了新的文献求助10
1秒前
摸鱼帝王完成签到,获得积分10
1秒前
1秒前
饱饱完成签到,获得积分10
1秒前
1秒前
zss发布了新的文献求助10
2秒前
2秒前
2秒前
夏召庆发布了新的文献求助10
3秒前
健身哥发布了新的文献求助10
4秒前
5秒前
小池同学完成签到,获得积分10
5秒前
从容雅柏发布了新的文献求助10
5秒前
5秒前
Propitious完成签到 ,获得积分10
6秒前
麻祖完成签到 ,获得积分10
6秒前
千空发布了新的文献求助10
6秒前
小伍完成签到,获得积分10
6秒前
suiyi发布了新的文献求助10
6秒前
Orange应助zlf采纳,获得10
7秒前
szj发布了新的文献求助10
7秒前
陈真完成签到,获得积分10
7秒前
赖林完成签到,获得积分10
7秒前
一个酸葡萄干完成签到,获得积分10
8秒前
逻辑猫完成签到,获得积分10
8秒前
9秒前
9秒前
SciGPT应助努力采纳,获得10
9秒前
10秒前
无所吊谓发布了新的文献求助10
10秒前
勤恳洙应助alive采纳,获得10
10秒前
xiaotian发布了新的文献求助10
11秒前
wyi发布了新的文献求助10
11秒前
今天发CNS了嘛完成签到,获得积分10
11秒前
风中的外套完成签到,获得积分10
11秒前
thirteen完成签到,获得积分10
11秒前
11秒前
12秒前
ran清完成签到,获得积分10
12秒前
崔洪瑞完成签到,获得积分10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205400
求助须知:如何正确求助?哪些是违规求助? 4384092
关于积分的说明 13652042
捐赠科研通 4242237
什么是DOI,文献DOI怎么找? 2327262
邀请新用户注册赠送积分活动 1325047
关于科研通互助平台的介绍 1277269