Extraction of tree heights in mountainous natural forests from UAV leaf-on stereoscopic imagery based on approximation of ground surfaces

遥感 地形 数字高程模型 激光雷达 均方误差 树(集合论) 牙冠(牙科) 仰角(弹道) 胸径 数学 地理 地图学 统计 几何学 林业 数学分析 医学 牙科
作者
Tianyu Yu,Wenjian Ni,Jianli Liu,Ruiqi Zhao,Zhiyu Zhang,Guoqing Sun
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:293: 113613-113613 被引量:11
标识
DOI:10.1016/j.rse.2023.113613
摘要

The application of high-resolution stereoscopic imagery acquired by Unmanned Aerial Vehicle (UAV) on the extraction of forest heights has grown rapidly in recent years. Most existing studies either required auxiliary terrain data, e.g., Digital Terrain Model (DTM) provided by lidar data, or focused on flat terrains. It is still a great challenge to extract tree heights in mountainous forests only using UAV leaf-on stereoscopic imagery. An algorithm referred to as AGAR (i.e., Approximation of Ground using Allometric Relationship) is proposed in this study to estimate individual heights of visible trees on UAV stereoscopic imagery in mountainous natural forests. The central idea of the AGAR algorithm is firstly to approximate the understory terrain elevations (i.e., DTM) based on attributes of tree crowns (e.g., crown area) and the iterative adjustment of allometric equation coefficients. Then individual tree heights are determined by differencing the elevation of crown tops with that of the approximated ground surface. The proposed algorithm was demonstrated at five sites with different terrain conditions by taking field measurements and ICESat-2 data as references, respectively. Results showed that the AGAR algorithm worked well on the estimation of tree heights at all sites. In contrast, the classical progressive triangulation filter (PTF) algorithm was susceptible to terrains and forest structures. The root mean square error (RMSE) and relative RMSE (rRMSE) of tree heights estimated by the PTF algorithm were 4.4 m ∼ 6.3 m and 32.6% ∼ 37.6%, respectively. They were decreased by the AGAR algorithm to 1.7 m ∼ 2.5 m and 12.6% ∼ 15.2%, respectively. The AGAR algorithm will substantially advance the application of UAV stereoscopic imagery on the extraction of tree heights in the absence of other available terrain data, and will also open new horizons for application of decimeter or even centimeter spaceborne stereoscopic imagery on forest vertical structures in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanny发布了新的文献求助10
刚刚
1秒前
hxh发布了新的文献求助10
2秒前
2105完成签到,获得积分10
2秒前
3秒前
谨慎的谷槐完成签到,获得积分10
3秒前
chuanxue发布了新的文献求助10
3秒前
来日方长发布了新的文献求助10
3秒前
公西凝芙发布了新的文献求助10
4秒前
FashionBoy应助执着柏柳采纳,获得10
5秒前
瘦瘦小萱完成签到 ,获得积分10
5秒前
Hello应助悟空采纳,获得30
6秒前
jy完成签到,获得积分10
6秒前
1234发布了新的文献求助10
7秒前
hxh完成签到,获得积分10
8秒前
9秒前
9秒前
工藤新一完成签到,获得积分10
10秒前
11秒前
11秒前
pengivy发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
端庄一刀发布了新的文献求助10
14秒前
14秒前
15秒前
研友_VZG7GZ应助公西凝芙采纳,获得10
15秒前
记得笑发布了新的文献求助10
17秒前
墨123完成签到,获得积分10
18秒前
19秒前
优美紫槐发布了新的文献求助10
19秒前
20秒前
hahhh7发布了新的文献求助10
21秒前
来日方长完成签到 ,获得积分10
22秒前
22秒前
Jasper应助Lolo采纳,获得10
22秒前
墨123发布了新的文献求助10
23秒前
打发打发的发到付电费完成签到 ,获得积分10
23秒前
Aurora发布了新的文献求助10
24秒前
岑岑岑完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232