Extraction of tree heights in mountainous natural forests from UAV leaf-on stereoscopic imagery based on approximation of ground surfaces

遥感 地形 数字高程模型 激光雷达 均方误差 树(集合论) 牙冠(牙科) 仰角(弹道) 胸径 数学 地理 地图学 统计 几何学 林业 数学分析 医学 牙科
作者
Tianyu Yu,Wenjian Ni,Jianli Liu,Ruiqi Zhao,Zhiyu Zhang,Guoqing Sun
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:293: 113613-113613 被引量:11
标识
DOI:10.1016/j.rse.2023.113613
摘要

The application of high-resolution stereoscopic imagery acquired by Unmanned Aerial Vehicle (UAV) on the extraction of forest heights has grown rapidly in recent years. Most existing studies either required auxiliary terrain data, e.g., Digital Terrain Model (DTM) provided by lidar data, or focused on flat terrains. It is still a great challenge to extract tree heights in mountainous forests only using UAV leaf-on stereoscopic imagery. An algorithm referred to as AGAR (i.e., Approximation of Ground using Allometric Relationship) is proposed in this study to estimate individual heights of visible trees on UAV stereoscopic imagery in mountainous natural forests. The central idea of the AGAR algorithm is firstly to approximate the understory terrain elevations (i.e., DTM) based on attributes of tree crowns (e.g., crown area) and the iterative adjustment of allometric equation coefficients. Then individual tree heights are determined by differencing the elevation of crown tops with that of the approximated ground surface. The proposed algorithm was demonstrated at five sites with different terrain conditions by taking field measurements and ICESat-2 data as references, respectively. Results showed that the AGAR algorithm worked well on the estimation of tree heights at all sites. In contrast, the classical progressive triangulation filter (PTF) algorithm was susceptible to terrains and forest structures. The root mean square error (RMSE) and relative RMSE (rRMSE) of tree heights estimated by the PTF algorithm were 4.4 m ∼ 6.3 m and 32.6% ∼ 37.6%, respectively. They were decreased by the AGAR algorithm to 1.7 m ∼ 2.5 m and 12.6% ∼ 15.2%, respectively. The AGAR algorithm will substantially advance the application of UAV stereoscopic imagery on the extraction of tree heights in the absence of other available terrain data, and will also open new horizons for application of decimeter or even centimeter spaceborne stereoscopic imagery on forest vertical structures in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feng完成签到,获得积分10
刚刚
庞振发布了新的文献求助10
1秒前
zhuzhu发布了新的文献求助10
2秒前
滴滴答答发布了新的文献求助10
2秒前
灵巧墨镜完成签到,获得积分20
3秒前
4秒前
栀子_茉莉发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
8秒前
8秒前
殷勤的花瓣完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助aa采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
Jaho完成签到,获得积分10
10秒前
卓一曲发布了新的文献求助10
10秒前
失眠成协发布了新的文献求助20
11秒前
来了完成签到 ,获得积分10
12秒前
dudu完成签到,获得积分10
13秒前
13秒前
天雨流芳发布了新的文献求助10
13秒前
trap发布了新的文献求助10
13秒前
赘婿应助bitman采纳,获得10
14秒前
HELSEN完成签到 ,获得积分10
16秒前
adb完成签到,获得积分20
17秒前
orixero应助小白采纳,获得10
17秒前
鱼儿乐园完成签到 ,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
Jbiolover应助刘蕊采纳,获得10
18秒前
嘎嘣脆完成签到 ,获得积分10
19秒前
20秒前
王一帆发布了新的文献求助10
20秒前
谢小盟应助刘奇采纳,获得10
20秒前
风云鱼发布了新的文献求助10
21秒前
专注怜寒发布了新的文献求助10
22秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400