Extraction of tree heights in mountainous natural forests from UAV leaf-on stereoscopic imagery based on approximation of ground surfaces

遥感 地形 数字高程模型 激光雷达 均方误差 树(集合论) 牙冠(牙科) 仰角(弹道) 胸径 数学 地理 地图学 统计 几何学 林业 数学分析 医学 牙科
作者
Tianyu Yu,Wenjian Ni,Jianli Liu,Ruiqi Zhao,Zhiyu Zhang,Guoqing Sun
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:293: 113613-113613 被引量:3
标识
DOI:10.1016/j.rse.2023.113613
摘要

The application of high-resolution stereoscopic imagery acquired by Unmanned Aerial Vehicle (UAV) on the extraction of forest heights has grown rapidly in recent years. Most existing studies either required auxiliary terrain data, e.g., Digital Terrain Model (DTM) provided by lidar data, or focused on flat terrains. It is still a great challenge to extract tree heights in mountainous forests only using UAV leaf-on stereoscopic imagery. An algorithm referred to as AGAR (i.e., Approximation of Ground using Allometric Relationship) is proposed in this study to estimate individual heights of visible trees on UAV stereoscopic imagery in mountainous natural forests. The central idea of the AGAR algorithm is firstly to approximate the understory terrain elevations (i.e., DTM) based on attributes of tree crowns (e.g., crown area) and the iterative adjustment of allometric equation coefficients. Then individual tree heights are determined by differencing the elevation of crown tops with that of the approximated ground surface. The proposed algorithm was demonstrated at five sites with different terrain conditions by taking field measurements and ICESat-2 data as references, respectively. Results showed that the AGAR algorithm worked well on the estimation of tree heights at all sites. In contrast, the classical progressive triangulation filter (PTF) algorithm was susceptible to terrains and forest structures. The root mean square error (RMSE) and relative RMSE (rRMSE) of tree heights estimated by the PTF algorithm were 4.4 m ∼ 6.3 m and 32.6% ∼ 37.6%, respectively. They were decreased by the AGAR algorithm to 1.7 m ∼ 2.5 m and 12.6% ∼ 15.2%, respectively. The AGAR algorithm will substantially advance the application of UAV stereoscopic imagery on the extraction of tree heights in the absence of other available terrain data, and will also open new horizons for application of decimeter or even centimeter spaceborne stereoscopic imagery on forest vertical structures in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hohn完成签到,获得积分10
1秒前
2秒前
dalian完成签到,获得积分10
2秒前
nzxnzx发布了新的文献求助10
2秒前
2秒前
Exc完成签到,获得积分0
3秒前
ddd完成签到,获得积分10
3秒前
祖冰绿完成签到,获得积分20
3秒前
金22完成签到,获得积分10
4秒前
Nicole完成签到 ,获得积分10
4秒前
优雅的猪完成签到,获得积分10
5秒前
因为我从来是那样完成签到,获得积分10
5秒前
5秒前
诗图完成签到,获得积分10
5秒前
所所应助杜兰特工队采纳,获得30
6秒前
小二郎应助猪猪hero采纳,获得10
6秒前
漫步云端完成签到,获得积分10
6秒前
彭于晏应助二狗家的春天采纳,获得10
6秒前
木子发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
9秒前
zzp完成签到,获得积分10
10秒前
刻苦的幻巧完成签到 ,获得积分10
10秒前
crrrrr完成签到,获得积分10
11秒前
11秒前
zym428完成签到,获得积分10
11秒前
coolkid应助1蓝采纳,获得10
11秒前
znsmaqwdy发布了新的文献求助10
11秒前
周琦发布了新的文献求助10
12秒前
科研通AI2S应助he采纳,获得10
12秒前
12秒前
LTY发布了新的文献求助30
13秒前
13秒前
超级不言发布了新的文献求助20
14秒前
康若英完成签到,获得积分10
14秒前
tree发布了新的文献求助10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650