亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Bipolar Membranes for Electrochemical Carbon Capture

二氧化碳 碳酸氢盐 可再生能源 碳捕获和储存(时间表) 环境科学 化学工程 材料科学 化学 工艺工程 气候变化 电气工程 生态学 生物 工程类 有机化学
作者
Justin C. Bui,Éowyn Lucas,Eric W. Lees,Andrew K. Liu,Harry A. Atwater,Chengxiang Xiang,Alexis T. Bell,Adam Z. Weber
标识
DOI:10.26434/chemrxiv-2023-3bv4p
摘要

Carbon dioxide (CO2) must be removed from the atmosphere to mitigate the negative effects of climate change. However, the most scalable methods for removing CO2 from the air require heat from fossil-fuel combustion to produce pure CO2 and continuously regenerate the sorbent. Bipolar-membrane electrodialysis (BPM-ED) is a promising technology that uses renewable electricity to dissociate water into acid and base to regenerate bicarbonate-based CO2 capture solutions, such as those used in chemical loops of direct-air-capture (DAC) processes, and also in direct-ocean capture (DOC) to promote atmospheric CO2 drawdown via decarbonization of the shallow ocean. However, a lack of understanding of the mechanisms of reactive carbon species transport in BPMs has precluded industrial-scale deployment of BPM-ED. In this study, we develop an experimentally-validated 1D model for the electrochemical regeneration of CO2 from bicarbonate-based carbon capture solutions and seawater using BPM-ED. Our experimental and computational results demonstrate that out-of-equilibrium buffer reactions within the BPM drive the formation of CO2 at the BPM/electrolyte interface with energy-intensities of less than 150 kJ mol-1. However, high rates of bubble formation increase the energy intensity of CO2 recovery at current densities >100 mA cm−2. Sensitivity analyses show that optimizing the BPM and bubble removal could enable CO2 recovery from bicarbonate solutions at energy intensities <100 kJ mol−1 and current densities >100 mA cm−2. These results provide design principles for industrial-scale CO2 recovery using BPM-ED.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
兴奋秋珊发布了新的文献求助10
6秒前
15秒前
21秒前
兴奋秋珊发布了新的文献求助10
26秒前
科研通AI2S应助科研通管家采纳,获得30
28秒前
情怀应助科研通管家采纳,获得10
28秒前
38秒前
39秒前
兴奋秋珊发布了新的文献求助10
44秒前
微茫发布了新的文献求助10
45秒前
50秒前
微茫完成签到,获得积分10
51秒前
兴奋秋珊发布了新的文献求助10
57秒前
nhzz2023完成签到 ,获得积分10
1分钟前
Ashao完成签到 ,获得积分10
1分钟前
月亮完成签到 ,获得积分10
1分钟前
顺心醉柳完成签到 ,获得积分10
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
1分钟前
丘比特应助xuan采纳,获得10
1分钟前
追寻绮玉发布了新的文献求助10
1分钟前
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
xuan发布了新的文献求助10
2分钟前
ZaZa完成签到,获得积分10
2分钟前
英姑应助顾建瑜采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得20
2分钟前
LL发布了新的文献求助10
2分钟前
2分钟前
nojego完成签到,获得积分10
2分钟前
3分钟前
兴奋秋珊发布了新的文献求助10
3分钟前
李健应助Zert采纳,获得10
3分钟前
充电宝应助xuan采纳,获得10
3分钟前
3分钟前
3分钟前
Zert发布了新的文献求助10
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346400
求助须知:如何正确求助?哪些是违规求助? 4481028
关于积分的说明 13947147
捐赠科研通 4378788
什么是DOI,文献DOI怎么找? 2406064
邀请新用户注册赠送积分活动 1398634
关于科研通互助平台的介绍 1371324