Forecasting User Interests Through Topic Tag Predictions in Online Health Communities

误传 计算机科学 危害 社会化媒体 互联网隐私 在线社区 医疗保健 主题模型 信息需求 万维网 数据科学 情报检索 计算机安全 心理学 经济 社会心理学 经济增长
作者
Amogh Subbakrishna Adishesha,Lily Jakielaszek,Fariha Azhar,Peixuan Zhang,Vasant Honavar,Fenglong Ma,Chandra P. Belani,Prasenjit Mitra,Xiaolei Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3645-3656 被引量:3
标识
DOI:10.1109/jbhi.2023.3271580
摘要

The increasing reliance on online communities for healthcare information by patients and caregivers has led to the increase in the spread of misinformation, or subjective, anecdotal and inaccurate or non-specific recommendations, which, if acted on, could cause serious harm to the patients. Hence, there is an urgent need to connect users with accurate and tailored health information in a timely manner to prevent such harm. This article proposes an innovative approach to suggesting reliable information to participants in online communities as they move through different stages in their disease or treatment. We hypothesize that patients with similar histories of disease progression or course of treatment would have similar information needs at comparable stages. Specifically, we pose the problem of predicting topic tags or keywords that describe the future information needs of users based on their profiles, traces of their online interactions within the community (past posts, replies) and the profiles and traces of online interactions of other users with similar profiles and similar traces of past interaction with the target users. The result is a variant of the collaborative information filtering or recommendation system tailored to the needs of users of online health communities. We report results of our experiments on two unique datasets from two different social media platforms which demonstrates the superiority of the proposed approach over the state of the art baselines with respect to accurate and timely prediction of topic tags (and hence information sources of interest).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huiiiii发布了新的文献求助10
3秒前
李爱国应助读研头秃采纳,获得10
3秒前
hdc12138完成签到 ,获得积分10
3秒前
杨好圆完成签到,获得积分10
3秒前
sole0627发布了新的文献求助10
4秒前
JamesPei应助yangwang采纳,获得10
6秒前
夜已深完成签到,获得积分10
6秒前
7秒前
万能图书馆应助殷勤柠檬采纳,获得10
10秒前
jinjinshan完成签到,获得积分10
12秒前
麦子完成签到,获得积分10
13秒前
14秒前
Murphy完成签到 ,获得积分10
14秒前
噜噜噜噜噜完成签到,获得积分10
16秒前
入海完成签到,获得积分10
17秒前
臧真完成签到 ,获得积分10
18秒前
南国应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
科科关注了科研通微信公众号
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
vlots应助科研通管家采纳,获得30
18秒前
科目三应助科研通管家采纳,获得10
18秒前
青衍应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
SJW--666应助科研通管家采纳,获得20
19秒前
烟花应助科研通管家采纳,获得10
19秒前
苏卿应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165059
求助须知:如何正确求助?哪些是违规求助? 2816125
关于积分的说明 7911486
捐赠科研通 2475817
什么是DOI,文献DOI怎么找? 1318378
科研通“疑难数据库(出版商)”最低求助积分说明 632116
版权声明 602370