Zeta电位
生物利用度
核化学
粒径
材料科学
纳米载体
化学
胶束
聚乙二醇
纳米颗粒
纳米技术
有机化学
药理学
医学
水溶液
物理化学
作者
Jian Zhang,Xiaoxiao Li,Jia Li,Michael Adu‐Frimpong,Xinyi Shen,Qing He,Wanjing Rong,Feng Shi,Xia Cao,Hao Ji,Elmurat Toreniyazov,Qilong Wang,Jiangnan Yu,Ximing Xu
标识
DOI:10.1088/1748-605x/acd15b
摘要
In this regard, we developed vitexin (Vi)-loaded D-ɑ-tocopherol polyethylene glycol succinate, polyvinylpyrrolidone K30 and sodium cholate mixed micelles (Vi-MMs) mainly for improving oral bioavailability and enhancing anti-osteoporotic effect of Vi. Thin layer dispersion method was employed to prepare Vi-MMs, and then the optimal prescription was optimized by the orthogonal design-response surface method, wherein encapsulation efficiency (EE) was used as optimizing index. The physical properties of Vi-MMs such as appearance morphology, particle size, and zeta potential were also characterized. We further analyzed thein-vitrorelease of Vi and Vi-MMs in three media and investigated the pharmacokinetics of Vi and Vi-MMs in rats. Anti-osteoporotic activity of Vi and Vi-MMs was assessed by establishing a zebrafish osteoporosis model with prednisone. Drug loading, EE, particle size and zeta potential of the optimized Vi-MMs were 8.58 ± 0.13%, 93.86 ± 1.79%, 20.41 ± 0.64 nm and -10 ± 0.56 mV, respectively. The optimized Vi-MMs were shaped spherically as exhibited by transmission electron microscopic technique, with evident core shell nano-structure, well dispersed. In all three media, the release rate of Vi-MMs was significantly higher than that of free Vi. The oral bioavailability of Vi-MMs was increased by 5.6-fold compared to free Vi. In addition, alleviation of prednisone induced osteoporosis in zebrafish by Vi-MMs further demonstrated good anti-osteoporotic effect. In summary, Vi-MMs exhibited enhanced bioavailability and anti-osteoporotic effect, which is expected to be potential nanocarrier for Vi applications in drug development.
科研通智能强力驱动
Strongly Powered by AbleSci AI