推论
同步
字母表
自动机
词(群论)
组合数学
同步(交流)
离散数学
二进制数
计算机科学
集合(抽象数据类型)
算法
数学
理论计算机科学
算术
拓扑(电路)
几何学
哲学
程序设计语言
语言学
标识
DOI:10.1007/978-3-031-07469-1_8
摘要
The goal of this paper is to present a family of partial automata that achieve length $$\varTheta (3^{\frac{n}{3}})$$ of the shortest carefully synchronizing words, but using $$\frac{2}{9}n + 2$$ letters, thus substantially improving the result obtained in [19], which is $$\frac{1}{3}n + 1$$ letters. Additionally, modifying our idea we obtain a family of automata over a three letter alphabet and a subexponential length of the shortest carefully synchronizing words and, as a corollary of that construction, a series of binary automata with a subexponential length of word reducing set of states to a particular subset.
科研通智能强力驱动
Strongly Powered by AbleSci AI