Selection of Classifiers to Enhance Efficacy of Metal/Organic Hybrid Sensor Array for VOC and Toxic Gas Identification

特征选择 传感器阵列 分类器(UML) 计算机科学 人工智能 导电聚合物 模式识别(心理学) 聚吡咯 材料科学 机器学习 聚合物 聚合 复合材料
作者
Nathan T. Riek,Seth So,Murat Akcakaya,Minhee Yun
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (20): 19136-19143
标识
DOI:10.1109/jsen.2022.3198014
摘要

Modern developments in gas sensor technology include a decrease in size and an increase in sensitivity and selectivity. These improvements, paired with postprocessing tools, such as machine learning, are pushing gas detection toward viability for complex tasks, such as volatile organic compound (VOC) analysis in human breath. In our research, we use a sensor array fabricated in our lab featuring a hybrid combination of metals and organic polymers [palladium (Pd), zinc oxide (ZnO), polypyrrole (PPy), and polyaniline (PANI)] designed to detect a range of VOCs and toxic gases (CO, H2, CH3OH, and NO2). An exhaustive analysis of 25 machine learning classifiers using three different feature sets was completed to find the best classifier and feature set combinations for one versus rest gas classification. We determined that ensemble classifiers, using normalized sensor data as a feature set, yield the best classification results. From these results, we demonstrated that Pd, PPy, and PANI are best suited to identify H2, NO2, and CH3OH, respectively. Furthermore, PANI is best suited to identify CO, so we correctly identified four gases from three sensor materials with sensitivity values all above 85%. These promising classification results could allow us to expand our set of gases and, therefore, make this sensor array viable for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小油菜发布了新的文献求助10
刚刚
1秒前
1秒前
wzg666发布了新的文献求助10
1秒前
orixero应助MMX采纳,获得10
1秒前
cxy3311完成签到,获得积分10
2秒前
CipherSage应助1531采纳,获得10
3秒前
研究生发布了新的文献求助10
3秒前
Orange应助景良采纳,获得10
3秒前
倪妮发布了新的文献求助10
5秒前
爆米花应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
无知者海生完成签到 ,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
mumuaidafu完成签到 ,获得积分10
6秒前
思源应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
Gxmmmm_应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
不配.应助科研通管家采纳,获得150
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
wanci应助FightPeng采纳,获得10
8秒前
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
后知后觉完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923590
求助须知:如何正确求助?哪些是违规求助? 4193852
关于积分的说明 13026589
捐赠科研通 3965851
什么是DOI,文献DOI怎么找? 2173546
邀请新用户注册赠送积分活动 1191146
关于科研通互助平台的介绍 1100700