Selection of Classifiers to Enhance Efficacy of Metal/Organic Hybrid Sensor Array for VOC and Toxic Gas Identification

特征选择 传感器阵列 分类器(UML) 计算机科学 人工智能 导电聚合物 模式识别(心理学) 聚吡咯 材料科学 机器学习 聚合物 聚合 复合材料
作者
Nathan T. Riek,Seth So,Murat Akcakaya,Minhee Yun
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (20): 19136-19143
标识
DOI:10.1109/jsen.2022.3198014
摘要

Modern developments in gas sensor technology include a decrease in size and an increase in sensitivity and selectivity. These improvements, paired with postprocessing tools, such as machine learning, are pushing gas detection toward viability for complex tasks, such as volatile organic compound (VOC) analysis in human breath. In our research, we use a sensor array fabricated in our lab featuring a hybrid combination of metals and organic polymers [palladium (Pd), zinc oxide (ZnO), polypyrrole (PPy), and polyaniline (PANI)] designed to detect a range of VOCs and toxic gases (CO, H2, CH3OH, and NO2). An exhaustive analysis of 25 machine learning classifiers using three different feature sets was completed to find the best classifier and feature set combinations for one versus rest gas classification. We determined that ensemble classifiers, using normalized sensor data as a feature set, yield the best classification results. From these results, we demonstrated that Pd, PPy, and PANI are best suited to identify H2, NO2, and CH3OH, respectively. Furthermore, PANI is best suited to identify CO, so we correctly identified four gases from three sensor materials with sensitivity values all above 85%. These promising classification results could allow us to expand our set of gases and, therefore, make this sensor array viable for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助含糊的之味采纳,获得10
1秒前
1秒前
望TIAN完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
笑笑完成签到 ,获得积分10
1秒前
2秒前
大冰完成签到,获得积分10
2秒前
novi完成签到,获得积分10
2秒前
titi发布了新的文献求助10
2秒前
见雨鱼完成签到 ,获得积分10
3秒前
3秒前
3秒前
哎哟很烦完成签到,获得积分10
3秒前
3秒前
Hello应助zyd采纳,获得10
4秒前
哈力栗发布了新的文献求助10
4秒前
4秒前
xiaobai应助luul采纳,获得10
4秒前
尊敬的芷卉完成签到,获得积分10
4秒前
kexuezhongxinhu完成签到 ,获得积分10
4秒前
文杰发布了新的文献求助10
5秒前
5秒前
kyf发布了新的文献求助10
5秒前
fanfan发布了新的文献求助10
5秒前
lan完成签到,获得积分10
5秒前
科研通AI6应助DOCTORLI采纳,获得10
5秒前
大冰发布了新的文献求助10
5秒前
6秒前
刻苦大门发布了新的文献求助10
6秒前
可爱乐曲发布了新的文献求助10
6秒前
追剧狂魔完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
123发布了新的文献求助10
7秒前
CodeCraft应助ahai采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
lsy关注了科研通微信公众号
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5327126
求助须知:如何正确求助?哪些是违规求助? 4467261
关于积分的说明 13900385
捐赠科研通 4359816
什么是DOI,文献DOI怎么找? 2394793
邀请新用户注册赠送积分活动 1388362
关于科研通互助平台的介绍 1359091