作者
Nathan T. Riek,Seth So,Murat Akcakaya,Minhee Yun
摘要
Modern developments in gas sensor technology include a decrease in size and an increase in sensitivity and selectivity. These improvements, paired with postprocessing tools, such as machine learning, are pushing gas detection toward viability for complex tasks, such as volatile organic compound (VOC) analysis in human breath. In our research, we use a sensor array fabricated in our lab featuring a hybrid combination of metals and organic polymers [palladium (Pd), zinc oxide (ZnO), polypyrrole (PPy), and polyaniline (PANI)] designed to detect a range of VOCs and toxic gases (CO, H2, CH3OH, and NO2). An exhaustive analysis of 25 machine learning classifiers using three different feature sets was completed to find the best classifier and feature set combinations for one versus rest gas classification. We determined that ensemble classifiers, using normalized sensor data as a feature set, yield the best classification results. From these results, we demonstrated that Pd, PPy, and PANI are best suited to identify H2, NO2, and CH3OH, respectively. Furthermore, PANI is best suited to identify CO, so we correctly identified four gases from three sensor materials with sensitivity values all above 85%. These promising classification results could allow us to expand our set of gases and, therefore, make this sensor array viable for real-world applications.