Memristor-Based Spectral Decomposition of Matrices and Its Applications

横杆开关 记忆电阻器 矩阵的特征分解 计算机科学 特征向量 矩阵乘法 算法 基质(化学分析) 矩阵分解 并行计算
作者
Zeinab S. Jalali,Chenghong Wang,Griffin Kearney,Geng Yuan,Caiwen Ding,Yinan Zhou,Yanzhi Wang,Sucheta Soundarajan
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tc.2022.3202746
摘要

The recently developed memristor technology allows for extremely fast implementation of a number of important matrix operations and algorithms. Moreover, the existence of fast matrix-vector operations offers the opportunity to design new matrix algorithms that exploit these operations. Here, we focus on the spectral decomposition of matrices, a task that plays an important role in a wide variety of applications from different engineering and scientific fields, including network science, control theory, advanced dynamics, and quantum mechanics. While there are a number of algorithms designed to find eigenvalues and eigenvectors of a matrix, these methods often suffer from poor running time performance. In this work, we present an algorithm for finding eigenvalues and eigenvectors that is designed to be used on memristor crossbar arrays. Although this algorithm can be implemented in a non-memristive system, its fast running time relies on the availability of extremely fast matrix-vector multiplication, as is offered by a memristor crossbar array. In this paper, we (1) show the running time improvements of existing eigendecomposition algorithms when matrix-vector multiplications are performed on a memristor crossbar array, and (2) present EigSweep, a novel, fully-parallel, fast and flexible eigendecomposition algorithm that gives an improvement in running time over traditional eigendecomposition algorithms when all are accelerated by a memristor crossbar. We discuss algorithmic aspects as well as hardware-related aspects of the implementation of EigSweep, and perform an extensive experimental analysis on real-world and synthetic matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高大雁兰发布了新的文献求助10
1秒前
kevinjy完成签到,获得积分10
2秒前
DANTE完成签到,获得积分10
2秒前
西瓜完成签到 ,获得积分10
2秒前
Diya.发布了新的文献求助10
4秒前
天真如松发布了新的文献求助10
4秒前
4秒前
赘婿应助盼盼采纳,获得10
6秒前
rui发布了新的文献求助30
7秒前
大个应助虚拟的老九采纳,获得10
7秒前
hxtong发布了新的文献求助10
8秒前
JamesPei应助WZ采纳,获得10
9秒前
Mr权完成签到,获得积分10
9秒前
充电宝应助1461644768采纳,获得10
9秒前
10秒前
Hello应助BZPL采纳,获得10
10秒前
10秒前
香蕉觅云应助天真如松采纳,获得10
10秒前
LUO完成签到,获得积分10
11秒前
duanhuiyuan举报纯真以松求助涉嫌违规
11秒前
彭于彦祖应助微尘采纳,获得30
12秒前
怕黑香氛完成签到,获得积分10
12秒前
那个笨笨发布了新的文献求助10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
丰知然应助科研通管家采纳,获得10
13秒前
FIN应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
丰知然应助科研通管家采纳,获得10
14秒前
hh应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得30
14秒前
Catalina_S应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
Owen应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462155
求助须知:如何正确求助?哪些是违规求助? 3055764
关于积分的说明 9049223
捐赠科研通 2745354
什么是DOI,文献DOI怎么找? 1506226
科研通“疑难数据库(出版商)”最低求助积分说明 696019
邀请新用户注册赠送积分活动 695574