MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data

聚类分析 计算机科学 水准点(测量) 组学 数据挖掘 人工智能 机器学习 贝叶斯定理 高维数据聚类 生物信息学 贝叶斯概率 生物 大地测量学 地理
作者
Zhiwei Rong,Zhilin Liu,Jiali Song,Lei Cao,Yipe Yu,Mantang Qiu,Yan Hou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106085-106085 被引量:18
标识
DOI:10.1016/j.compbiomed.2022.106085
摘要

The discovery of cancer subtypes based on unsupervised clustering helps in providing a precise diagnosis, guide treatment, and improve patients' prognoses. Instead of single-omics data, multi-omics data can improve the clustering performance because it obtains a comprehensive landscape for understanding biological systems and mechanisms. However, heterogeneous data from multiple sources raises high complexity and different kinds of noise, which are detrimental to the extraction of clustering information. We propose an end-to-end deep learning based method, called Multi-omics Clustering Variational Autoencoders (MCluster-VAEs), that can extract cluster-friendly representations on multi-omics data. First, a unified network architecture with an attention mechanism was developed for accurately modeling multi-omics data. Then, using a novel objective function built from the Variational Bayes technique, the model was trained to effectively obtain the posterior estimation of the clustering assignments. Compared with 12 other state-of-the-art multi-omics clustering methods, MCluster-VAEs achieved an outstanding performance on benchmark datasets from the TCGA database. On the Pan Cancer dataset, MCluster-VAEs achieved an adjusted Rand index of approximately 0.78 for cancer category recognition, an increase of more than 18% compared with other methods. Furthermore, a survival analysis and clinical parameter enrichment tests conducted on 10 cancer datasets demonstrated that MCluster-VAEs provides comparable and even better results than many common integrative approaches. These results demonstrate that MCluster-VAEs are a powerful new tool for dissecting complex multi-omics relationships and providing new insights for cancer subtype discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伯赏诗霜完成签到,获得积分10
刚刚
NN应助LIn采纳,获得10
1秒前
1秒前
超级无敌学术苦瓜完成签到,获得积分10
1秒前
1秒前
Zn应助111采纳,获得10
2秒前
舒适静丹完成签到,获得积分10
3秒前
丽颖发布了新的文献求助10
4秒前
cui完成签到,获得积分10
4秒前
lixm完成签到,获得积分10
4秒前
yyyyy语言完成签到,获得积分10
4秒前
栗子完成签到,获得积分10
5秒前
卧镁铀钳完成签到 ,获得积分10
6秒前
DHL完成签到,获得积分10
7秒前
TT发布了新的文献求助10
7秒前
小蘑菇应助科研通管家采纳,获得30
8秒前
terence应助科研通管家采纳,获得30
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
9秒前
害怕的小玉完成签到,获得积分10
9秒前
10秒前
13秒前
梦里花落知多少完成签到,获得积分10
13秒前
14秒前
阳阳发布了新的文献求助10
14秒前
Poyd发布了新的文献求助10
16秒前
开开完成签到,获得积分10
16秒前
tao_blue发布了新的文献求助10
17秒前
17秒前
888完成签到,获得积分10
17秒前
饭神仙鱼完成签到,获得积分10
18秒前
KBYer发布了新的文献求助20
18秒前
Jzhang应助tmpstlml采纳,获得10
19秒前
YoYo发布了新的文献求助10
19秒前
豌豆发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849