Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

神经影像学 模式 模态(人机交互) 计算机科学 人工智能 磁共振成像 医学 神经科学 心理学 精神科 放射科 社会科学 社会学
作者
Afshin Shoeibi,Marjane Khodatars,Mahboobeh Jafari,Navid Ghassemi,Parisa Moridian,Roohallah Alizadehsani,Sai Ho Ling,Abbas Khosravi,Hamid Alinejad‐Rokny,Hak‐Keung Lam,Matthew Fuller‐Tyszkiewicz,U. Rajendra Acharya,Donovan Anderson,Yudong Zhang,J. M. Górriz
出处
期刊:Information Fusion [Elsevier BV]
卷期号:93: 85-117 被引量:70
标识
DOI:10.1016/j.inffus.2022.12.010
摘要

Brain diseases, including tumors and mental and neurological disorders, seriously threaten the health and well-being of millions of people worldwide. Structural and functional neuroimaging modalities are commonly used by physicians to aid the diagnosis of brain diseases. In clinical settings, specialist doctors typically fuse the magnetic resonance imaging (MRI) data with other neuroimaging modalities for brain disease detection. As these two approaches offer complementary information, fusing these neuroimaging modalities helps physicians accurately diagnose brain diseases. Typically, fusion is performed between a functional and a structural neuroimaging modality. Because the functional modality can complement the structural modality information, thus improving the performance for the diagnosis of brain diseases by specialists. However, analyzing the fusion of neuroimaging modalities is difficult for specialist doctors. Deep Learning (DL) is a branch of artificial intelligence that has shown superior performances compared to more conventional methods in tasks such as brain disease detection from neuroimaging modalities. This work presents a comprehensive review paper in the field of brain disease detection from the fusion of neuroimaging modalities using DL models like convolutional neural networks (CNNs), recurrent neural networks (RNNs), pretrained, generative adversarial networks (GANs), and Autoencoders (AEs). First, neuroimaging modalities and the need for fusion are discussed. Then, review papers published in the field of neuroimaging multimodalities using AI techniques are explored. Moreover, fusion levels based on DL methods, including input, layer, and decision, with related studies conducted on diagnosing brain diseases, are discussed. Other sections present the most important challenges for diagnosing brain diseases from the fusion of neuroimaging modalities. In the discussion section, the details of previous research on the fusion of neuroimaging modalities based on MRI and DL models are reported. In the following, the most important future directions include Datasets, DA, imbalanced data, DL models, explainable AI, and hardware resources are presented. Finally, the main findings of this study are presented in the conclusion section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐完成签到,获得积分20
刚刚
刚刚
小田螺完成签到,获得积分10
刚刚
四然完成签到,获得积分10
1秒前
bodhi完成签到,获得积分10
1秒前
河狸上校完成签到 ,获得积分10
1秒前
hyf567完成签到,获得积分10
1秒前
安静的兔子完成签到,获得积分10
2秒前
西米露完成签到 ,获得积分10
2秒前
2秒前
Elephantzyy发布了新的文献求助30
3秒前
芳芳子呀完成签到,获得积分10
3秒前
XIEMIN发布了新的文献求助10
3秒前
优雅的废完成签到,获得积分10
3秒前
natuki完成签到,获得积分10
3秒前
Hadara发布了新的文献求助10
4秒前
桐桐应助宇宙凛采纳,获得10
4秒前
petrichor发布了新的文献求助10
4秒前
Jasper应助li采纳,获得10
4秒前
叶叶关注了科研通微信公众号
5秒前
5秒前
donson完成签到,获得积分10
5秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
iNk应助科研通管家采纳,获得10
7秒前
paulbarnabas发布了新的文献求助10
7秒前
8秒前
8秒前
李健应助迷航采纳,获得10
8秒前
开心之王完成签到,获得积分10
9秒前
twotwomi发布了新的文献求助10
9秒前
9秒前
李健应助郭一采纳,获得10
9秒前
领导范儿应助小田螺采纳,获得10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950179
求助须知:如何正确求助?哪些是违规求助? 3495612
关于积分的说明 11077812
捐赠科研通 3226090
什么是DOI,文献DOI怎么找? 1783470
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874