Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

神经影像学 模式 模态(人机交互) 计算机科学 人工智能 磁共振成像 医学 神经科学 心理学 精神科 放射科 社会科学 社会学
作者
Afshin Shoeibi,Marjane Khodatars,Mahboobeh Jafari,Navid Ghassemi,Parisa Moridian,Roohallah Alizadehsani,Sai Ho Ling,Abbas Khosravi,Hamid Alinejad‐Rokny,Hak‐Keung Lam,Matthew Fuller‐Tyszkiewicz,U. Rajendra Acharya,Donovan Anderson,Yudong Zhang,J. M. Górriz
出处
期刊:Information Fusion [Elsevier]
卷期号:93: 85-117 被引量:49
标识
DOI:10.1016/j.inffus.2022.12.010
摘要

Brain diseases, including tumors and mental and neurological disorders, seriously threaten the health and well-being of millions of people worldwide. Structural and functional neuroimaging modalities are commonly used by physicians to aid the diagnosis of brain diseases. In clinical settings, specialist doctors typically fuse the magnetic resonance imaging (MRI) data with other neuroimaging modalities for brain disease detection. As these two approaches offer complementary information, fusing these neuroimaging modalities helps physicians accurately diagnose brain diseases. Typically, fusion is performed between a functional and a structural neuroimaging modality. Because the functional modality can complement the structural modality information, thus improving the performance for the diagnosis of brain diseases by specialists. However, analyzing the fusion of neuroimaging modalities is difficult for specialist doctors. Deep Learning (DL) is a branch of artificial intelligence that has shown superior performances compared to more conventional methods in tasks such as brain disease detection from neuroimaging modalities. This work presents a comprehensive review paper in the field of brain disease detection from the fusion of neuroimaging modalities using DL models like convolutional neural networks (CNNs), recurrent neural networks (RNNs), pretrained, generative adversarial networks (GANs), and Autoencoders (AEs). First, neuroimaging modalities and the need for fusion are discussed. Then, review papers published in the field of neuroimaging multimodalities using AI techniques are explored. Moreover, fusion levels based on DL methods, including input, layer, and decision, with related studies conducted on diagnosing brain diseases, are discussed. Other sections present the most important challenges for diagnosing brain diseases from the fusion of neuroimaging modalities. In the discussion section, the details of previous research on the fusion of neuroimaging modalities based on MRI and DL models are reported. In the following, the most important future directions include Datasets, DA, imbalanced data, DL models, explainable AI, and hardware resources are presented. Finally, the main findings of this study are presented in the conclusion section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助laura采纳,获得10
刚刚
徐矿完成签到,获得积分10
刚刚
快乐西瓜完成签到,获得积分10
刚刚
羊羊关注了科研通微信公众号
刚刚
1秒前
柚子发布了新的文献求助10
1秒前
刘艺珍完成签到,获得积分10
1秒前
赘婿应助泡椒采纳,获得10
2秒前
Dreamboat完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
嗯九完成签到 ,获得积分10
3秒前
3秒前
阿泗完成签到,获得积分10
4秒前
在水一方发布了新的文献求助10
5秒前
柒柒完成签到,获得积分10
5秒前
chaser完成签到,获得积分10
5秒前
糊涂的胡发布了新的文献求助30
5秒前
Iris关注了科研通微信公众号
5秒前
盛yyyy完成签到 ,获得积分10
5秒前
5秒前
王文睿完成签到,获得积分10
6秒前
6秒前
6秒前
嘴嘴发布了新的文献求助10
7秒前
7秒前
hiten发布了新的文献求助10
7秒前
科目三应助折耳Doc采纳,获得30
7秒前
酷炫依凝发布了新的文献求助10
7秒前
追寻幻翠发布了新的文献求助10
8秒前
儒雅的菠萝吹雪完成签到,获得积分10
8秒前
8秒前
在水一方应助赧赧采纳,获得10
8秒前
香蕉觅云应助纪元龙采纳,获得50
9秒前
9秒前
10秒前
10秒前
脑洞疼应助朴实凡柔采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663