亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

神经影像学 模式 模态(人机交互) 计算机科学 人工智能 磁共振成像 医学 神经科学 心理学 精神科 放射科 社会科学 社会学
作者
Afshin Shoeibi,Marjane Khodatars,Mahboobeh Jafari,Navid Ghassemi,Parisa Moridian,Roohallah Alizadehsani,Sai Ho Ling,Abbas Khosravi,Hamid Alinejad‐Rokny,Hak‐Keung Lam,Matthew Fuller‐Tyszkiewicz,U. Rajendra Acharya,Donovan Anderson,Yudong Zhang,J. M. Górriz
出处
期刊:Information Fusion [Elsevier BV]
卷期号:93: 85-117 被引量:70
标识
DOI:10.1016/j.inffus.2022.12.010
摘要

Brain diseases, including tumors and mental and neurological disorders, seriously threaten the health and well-being of millions of people worldwide. Structural and functional neuroimaging modalities are commonly used by physicians to aid the diagnosis of brain diseases. In clinical settings, specialist doctors typically fuse the magnetic resonance imaging (MRI) data with other neuroimaging modalities for brain disease detection. As these two approaches offer complementary information, fusing these neuroimaging modalities helps physicians accurately diagnose brain diseases. Typically, fusion is performed between a functional and a structural neuroimaging modality. Because the functional modality can complement the structural modality information, thus improving the performance for the diagnosis of brain diseases by specialists. However, analyzing the fusion of neuroimaging modalities is difficult for specialist doctors. Deep Learning (DL) is a branch of artificial intelligence that has shown superior performances compared to more conventional methods in tasks such as brain disease detection from neuroimaging modalities. This work presents a comprehensive review paper in the field of brain disease detection from the fusion of neuroimaging modalities using DL models like convolutional neural networks (CNNs), recurrent neural networks (RNNs), pretrained, generative adversarial networks (GANs), and Autoencoders (AEs). First, neuroimaging modalities and the need for fusion are discussed. Then, review papers published in the field of neuroimaging multimodalities using AI techniques are explored. Moreover, fusion levels based on DL methods, including input, layer, and decision, with related studies conducted on diagnosing brain diseases, are discussed. Other sections present the most important challenges for diagnosing brain diseases from the fusion of neuroimaging modalities. In the discussion section, the details of previous research on the fusion of neuroimaging modalities based on MRI and DL models are reported. In the following, the most important future directions include Datasets, DA, imbalanced data, DL models, explainable AI, and hardware resources are presented. Finally, the main findings of this study are presented in the conclusion section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
9秒前
东篱发布了新的文献求助10
15秒前
馆长应助科研通管家采纳,获得10
19秒前
科研通AI6应助东篱采纳,获得10
22秒前
51秒前
57秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
烟花应助曾泰平采纳,获得10
1分钟前
2分钟前
2分钟前
起风了完成签到 ,获得积分10
2分钟前
曾泰平发布了新的文献求助10
2分钟前
Able完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
忧郁小鸽子完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
cadnash完成签到,获得积分10
3分钟前
4分钟前
善学以致用应助桃欣采纳,获得10
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
4分钟前
iman完成签到,获得积分10
4分钟前
共享精神应助Dreamer.采纳,获得10
5分钟前
愉快的花卷完成签到,获得积分10
5分钟前
田様应助愉快的花卷采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
Dreamer.发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595764
求助须知:如何正确求助?哪些是违规求助? 4008008
关于积分的说明 12408755
捐赠科研通 3686743
什么是DOI,文献DOI怎么找? 2032042
邀请新用户注册赠送积分活动 1065278
科研通“疑难数据库(出版商)”最低求助积分说明 950616