亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DrugAI: a multi-view deep learning model for predicting drug–target activating/inhibiting mechanisms

人工智能 深度学习 计算机科学 稳健性(进化) 机器学习 卷积神经网络 药物发现 人工神经网络 公共化学 机制(生物学) 计算生物学 生物信息学 生物 基因 认识论 哲学 生物化学
作者
Siqin Zhang,Kuo Yang,Zhenhong Liu,Xinxing Lai,Zhen Yang,Jianyang Zeng,Shao Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:40
标识
DOI:10.1093/bib/bbac526
摘要

Abstract Understanding the mechanisms of candidate drugs play an important role in drug discovery. The activating/inhibiting mechanisms between drugs and targets are major types of mechanisms of drugs. Owing to the complexity of drug–target (DT) mechanisms and data scarcity, modelling this problem based on deep learning methods to accurately predict DT activating/inhibiting mechanisms remains a considerable challenge. Here, by considering network pharmacology, we propose a multi-view deep learning model, DrugAI, which combines four modules, i.e. a graph neural network for drugs, a convolutional neural network for targets, a network embedding module for drugs and targets and a deep neural network for predicting activating/inhibiting mechanisms between drugs and targets. Computational experiments show that DrugAI performs better than state-of-the-art methods and has good robustness and generalization. To demonstrate the reliability of the predictive results of DrugAI, bioassay experiments are conducted to validate two drugs (notopterol and alpha-asarone) predicted to activate TRPV1. Moreover, external validation bears out 61 pairs of mechanism relationships between natural products and their targets predicted by DrugAI based on independent literatures and PubChem bioassays. DrugAI, for the first time, provides a powerful multi-view deep learning framework for robust prediction of DT activating/inhibiting mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Karol发布了新的文献求助10
7秒前
7788完成签到,获得积分10
7秒前
无000发布了新的文献求助10
7秒前
科研通AI6.1应助一见喜采纳,获得10
15秒前
18秒前
24秒前
克劳德发布了新的文献求助10
24秒前
一见喜发布了新的文献求助10
30秒前
CodeCraft应助黑神白了采纳,获得10
31秒前
领导范儿应助无000采纳,获得10
35秒前
43秒前
youy完成签到 ,获得积分10
49秒前
51秒前
边雨完成签到 ,获得积分10
57秒前
57秒前
千空完成签到 ,获得积分10
58秒前
1分钟前
kingqjack完成签到,获得积分10
1分钟前
悦耳青梦发布了新的文献求助10
1分钟前
克劳德完成签到,获得积分10
1分钟前
bkagyin应助悦耳青梦采纳,获得10
1分钟前
nolan完成签到 ,获得积分10
1分钟前
黑摄会阿Fay完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zztop发布了新的文献求助10
1分钟前
ZanE完成签到,获得积分10
1分钟前
1分钟前
和和和完成签到,获得积分10
1分钟前
华仔应助沉默的倔驴采纳,获得10
1分钟前
nanhe698发布了新的文献求助10
1分钟前
Fan完成签到 ,获得积分0
1分钟前
2分钟前
nanhe698完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746628
求助须知:如何正确求助?哪些是违规求助? 5437255
关于积分的说明 15355719
捐赠科研通 4886684
什么是DOI,文献DOI怎么找? 2627339
邀请新用户注册赠送积分活动 1575825
关于科研通互助平台的介绍 1532573