Qualitative and quantitative detection and identification of two benzodiazepines based on SERS and convolutional neural network technology

卷积神经网络 定性分析 计算机科学 深度学习 鉴定(生物学) 定量分析(化学) 人工智能 咪唑安定 模式识别(心理学) 化学 色谱法 定性研究 医学 药理学 植物 生物 社会学 镇静 社会科学
作者
Xuanyu Sha,Guoqiang Fang,Guangxu Cao,Shuzhi Li,Wuliji Hasi,Siqingaowa Han
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:147 (24): 5785-5795 被引量:14
标识
DOI:10.1039/d2an01277d
摘要

Drug abuse is a global social issue of concern. As the drug market expands, there is an urgent need for technological methods to rapidly detect drug abuse to meet the needs of different situations. Here, we present a strategy for the rapid identification of benzodiazepines (midazolam and diazepam) using surface-enhanced Raman scattering (SERS) combined with neural networks (CNN). The method uses a self-assembled silver nanoparticle paper-based SERS substrate for detection. Then, a SERS spectrum intelligent recognition model based on deep learning technology was constructed to realize the rapid and sensitive distinction between the two drugs. In this work, a total of 560 SERS spectra were collected, and the qualitative and quantitative identification of the two drugs in water and a beverage (Sprite) was realized by a trained convolutional neural network (CNN). The predicted concentrations for each scenario could reach 0.1-50 ppm (midazolam in water), 0.5-50 ppm (midazolam in water and diazepam in Sprite), and 5-150 ppm (diazepam in Sprite), with a strong coefficient of determination (R2) larger than 0.9662. The advantage of this method is that the neural network can extract data features from the entire SERS spectrum, which makes up for information loss when manually identifying the spectrum and selecting a limited number of characteristic peaks. This work clearly clarifies that the combination of SERS and deep learning technology has become an inevitable development trend, and also demonstrates the great potential of this strategy in the practical application of SERS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小勇仔发布了新的文献求助10
1秒前
外向语蝶完成签到,获得积分10
2秒前
2秒前
6秒前
lu完成签到,获得积分10
10秒前
苏卿发布了新的文献求助30
12秒前
慕青应助小洋采纳,获得10
13秒前
天天发布了新的文献求助10
14秒前
Owen应助小勇仔采纳,获得10
14秒前
超级纸飞机完成签到,获得积分10
14秒前
李小强完成签到,获得积分10
16秒前
娜娜完成签到,获得积分10
17秒前
恩善完成签到 ,获得积分10
18秒前
传奇3应助YoursSummer采纳,获得10
19秒前
21秒前
24秒前
小洋发布了新的文献求助10
26秒前
余健发布了新的文献求助10
26秒前
31秒前
SamuelLiu完成签到,获得积分10
32秒前
33秒前
清爽乐菱应助苏卿采纳,获得30
34秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
天天发布了新的文献求助50
40秒前
小橘子发布了新的文献求助10
41秒前
42秒前
酷波er应助YoursSummer采纳,获得10
42秒前
若水完成签到,获得积分10
44秒前
44秒前
饼饼发布了新的文献求助10
45秒前
我是老大应助糟糕的铁锤采纳,获得50
47秒前
情怀应助满意的盼夏采纳,获得10
48秒前
核桃应助研友_xnEOX8采纳,获得60
49秒前
50秒前
yar应助WD采纳,获得10
52秒前
小白完成签到,获得积分10
55秒前
雯子完成签到,获得积分10
58秒前
58秒前
1分钟前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182