Tree Detection and Species Classification in a Mixed Species Forest Using Unoccupied Aircraft System (UAS) RGB and Multispectral Imagery

树(集合论) 多光谱图像 遥感 分割 桉树 计算机科学 天蓬 树冠 模式识别(心理学) 人工智能 数学 地理 生态学 生物 数学分析
作者
Poornima Sivanandam,Arko Lucieer
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (19): 4963-4963 被引量:16
标识
DOI:10.3390/rs14194963
摘要

Information on tree species and changes in forest composition is necessary to understand species-specific responses to change, and to develop conservation strategies. Remote sensing methods have been increasingly used for tree detection and species classification. In mixed species forests, conventional tree detection methods developed with assumptions about uniform tree canopy structure often fail. The main aim of this study is to identify effective methods for tree delineation and species classification in an Australian native forest. Tree canopies were delineated at three different spatial scales of analysis: (i) superpixels representing small elements in the tree canopy, (ii) tree canopy objects generated using a conventional segmentation technique, multiresolution segmentation (MRS), and (iii) individual tree bounding boxes detected using deep learning based on the DeepForest open-source algorithm. Combinations of spectral, texture, and structural measures were tested to assess features relevant for species classification using RandomForest. The highest overall classification accuracies were achieved at the superpixel scale (0.84 with all classes and 0.93 with Eucalyptus classes grouped). The highest accuracies at the individual tree bounding box and object scales were similar (0.77 with Eucalyptus classes grouped), highlighting the potential of tree detection using DeepForest, which uses only RGB, compared to site-specific tuning with MRS using additional layers. This study demonstrates the broad applicability of DeepForest and superpixel approaches for tree delineation and species classification. These methods have the potential to offer transferable solutions that can be applied in other forests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩晚渔完成签到 ,获得积分10
刚刚
3秒前
5秒前
hh完成签到,获得积分10
5秒前
彩色曼雁发布了新的文献求助10
7秒前
汉堡包应助张豪杰采纳,获得10
7秒前
8秒前
专注凌文发布了新的文献求助10
9秒前
11秒前
11秒前
LY发布了新的文献求助10
11秒前
科研通AI2S应助哦啦啦采纳,获得10
12秒前
lzh应助哦啦啦采纳,获得30
12秒前
hh发布了新的文献求助10
12秒前
我是老大应助搞怪的白竹采纳,获得10
14秒前
FashionBoy应助专注凌文采纳,获得10
15秒前
16秒前
李爱国应助嘟嘟嘟嘟采纳,获得10
16秒前
萧水白应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得20
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
哈哈哈发布了新的文献求助10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
风清扬应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
LY完成签到,获得积分10
17秒前
丰广富山完成签到,获得积分10
18秒前
18秒前
害怕的慕晴完成签到,获得积分10
19秒前
牛子莼完成签到,获得积分10
20秒前
锦时完成签到,获得积分10
20秒前
爆米花应助YJL采纳,获得10
20秒前
英姑应助逗小妹采纳,获得10
23秒前
噗愣噗愣地刚发芽完成签到 ,获得积分10
23秒前
Lzt发布了新的文献求助10
23秒前
柠檬汽水完成签到,获得积分10
24秒前
25秒前
155完成签到,获得积分10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952525
求助须知:如何正确求助?哪些是违规求助? 3497889
关于积分的说明 11089301
捐赠科研通 3228428
什么是DOI,文献DOI怎么找? 1784906
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309