Tree Detection and Species Classification in a Mixed Species Forest Using Unoccupied Aircraft System (UAS) RGB and Multispectral Imagery

树(集合论) 多光谱图像 遥感 分割 桉树 计算机科学 天蓬 树冠 模式识别(心理学) 人工智能 数学 地理 生态学 生物 数学分析
作者
Poornima Sivanandam,Arko Lucieer
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (19): 4963-4963 被引量:16
标识
DOI:10.3390/rs14194963
摘要

Information on tree species and changes in forest composition is necessary to understand species-specific responses to change, and to develop conservation strategies. Remote sensing methods have been increasingly used for tree detection and species classification. In mixed species forests, conventional tree detection methods developed with assumptions about uniform tree canopy structure often fail. The main aim of this study is to identify effective methods for tree delineation and species classification in an Australian native forest. Tree canopies were delineated at three different spatial scales of analysis: (i) superpixels representing small elements in the tree canopy, (ii) tree canopy objects generated using a conventional segmentation technique, multiresolution segmentation (MRS), and (iii) individual tree bounding boxes detected using deep learning based on the DeepForest open-source algorithm. Combinations of spectral, texture, and structural measures were tested to assess features relevant for species classification using RandomForest. The highest overall classification accuracies were achieved at the superpixel scale (0.84 with all classes and 0.93 with Eucalyptus classes grouped). The highest accuracies at the individual tree bounding box and object scales were similar (0.77 with Eucalyptus classes grouped), highlighting the potential of tree detection using DeepForest, which uses only RGB, compared to site-specific tuning with MRS using additional layers. This study demonstrates the broad applicability of DeepForest and superpixel approaches for tree delineation and species classification. These methods have the potential to offer transferable solutions that can be applied in other forests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
TQY完成签到,获得积分10
6秒前
美少叔叔发布了新的文献求助10
6秒前
9秒前
西柚完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
科研通AI5应助cm采纳,获得10
12秒前
13秒前
xuxu发布了新的文献求助10
13秒前
13秒前
陈露佳发布了新的文献求助10
13秒前
13秒前
万能图书馆应助潘婷婷呀采纳,获得10
14秒前
14秒前
拼搏的龙发布了新的文献求助10
16秒前
zhanks发布了新的文献求助10
16秒前
王淑华完成签到,获得积分20
16秒前
17秒前
bkagyin应助kirito采纳,获得10
18秒前
慢慢发布了新的文献求助30
18秒前
18秒前
李爱国应助咔咔采纳,获得10
19秒前
Tong应助未晚采纳,获得20
19秒前
大模型应助zhanks采纳,获得10
19秒前
安之若素发布了新的文献求助10
20秒前
20秒前
酷波er应助xuxu采纳,获得10
20秒前
李健应助lxh采纳,获得10
21秒前
meo应助小孩015采纳,获得10
21秒前
科研通AI5应助陈露佳采纳,获得10
22秒前
SciGPT应助zqq123采纳,获得10
22秒前
周周发布了新的文献求助10
23秒前
23秒前
23秒前
kaiqiang完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090