电化学
阳极
材料科学
氧化物
电极
纳米结构
金属
亚稳态
离子
纳米尺度
电池(电)
化学工程
纳米技术
无机化学
化学物理
化学
物理化学
热力学
物理
冶金
功率(物理)
有机化学
工程类
作者
Kai Wang,Weibo Hua,Xiaohui Huang,David Stenzel,Junbo Wang,Ziming Ding,Yanyan Cui,Qingsong Wang,Helmut Ehrenberg,Ben Breitung,Christian Kübel,Xiaoke Mu
标识
DOI:10.1038/s41467-023-37034-6
摘要
High entropy oxides (HEOs) with chemically disordered multi-cation structure attract intensive interest as negative electrode materials for battery applications. The outstanding electrochemical performance has been attributed to the high-entropy stabilization and the so-called 'cocktail effect'. However, the configurational entropy of the HEO, which is thermodynamically only metastable at room-temperature, is insufficient to drive the structural reversibility during conversion-type battery reaction, and the 'cocktail effect' has not been explained thus far. This work unveils the multi-cations synergy of the HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O at atomic and nanoscale during electrochemical reaction and explains the 'cocktail effect'. The more electronegative elements form an electrochemically inert 3-dimensional metallic nano-network enabling electron transport. The electrochemical inactive cation stabilizes an oxide nanophase, which is semi-coherent with the metallic phase and accommodates Li+ ions. This self-assembled nanostructure enables stable cycling of micron-sized particles, which bypasses the need for nanoscale pre-modification required for conventional metal oxides in battery applications. This demonstrates elemental diversity is the key for optimizing multi-cation electrode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI