代谢组
代谢物
孟德尔随机化
生物
代谢组学
胰腺癌
癌症
微生物群
内科学
生物信息学
肿瘤科
计算生物学
遗传学
医学
基因
内分泌学
基因型
遗传变异
作者
Hua Zhong,Shuai Liu,Jingjing Zhu,Lang Wu
摘要
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies, which is featured by systematic metabolism. Thus, a better understanding of metabolic dysregulation in PDAC is important to better characterize its etiology. Here, we performed a large metabolome-wide association study (MWAS) to systematically explore associations between genetically predicted metabolite levels in blood and PDAC risk. Using data from 881 subjects of European descent in the TwinsUK Project, comprehensive genetic models were built to predict serum metabolite levels. These prediction models were applied to the genetic data of 8275 cases and 6723 controls included in the PanScan (I, II and III) and PanC4 consortia. After assessing the metabolite-PDAC risk associations by a slightly modified TWAS/FUSION framework, we identified five metabolites (including two dipeptides) showing significant associations with PDAC risk at false discovery rate (FDR) <0.05. Integrated with gut microbial information, two-sample Mendelian randomization (MR) analyses were further performed to investigate the relationship among serum metabolites, gut microbiome features and PDAC. The flavonoid-degrading bacteria Flavonifractor sp90199495 was found to be associated with metabolite X-21849 and it was also shown to be associated with PDAC risk. Collectively, our study identified novel candidate metabolites for PDAC risk, which could lead to new insights into the etiology of PDAC and improved treatment options.
科研通智能强力驱动
Strongly Powered by AbleSci AI