Associations between genetically predicted levels of blood metabolites and pancreatic cancer risk

代谢组 代谢物 孟德尔随机化 生物 代谢组学 胰腺癌 癌症 微生物群 内科学 生物信息学 肿瘤科 计算生物学 遗传学 医学 基因 内分泌学 基因型 遗传变异
作者
Hua Zhong,Shuai Liu,Jingjing Zhu,Lang Wu
出处
期刊:International Journal of Cancer [Wiley]
卷期号:153 (1): 103-110 被引量:27
标识
DOI:10.1002/ijc.34466
摘要

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies, which is featured by systematic metabolism. Thus, a better understanding of metabolic dysregulation in PDAC is important to better characterize its etiology. Here, we performed a large metabolome-wide association study (MWAS) to systematically explore associations between genetically predicted metabolite levels in blood and PDAC risk. Using data from 881 subjects of European descent in the TwinsUK Project, comprehensive genetic models were built to predict serum metabolite levels. These prediction models were applied to the genetic data of 8275 cases and 6723 controls included in the PanScan (I, II and III) and PanC4 consortia. After assessing the metabolite-PDAC risk associations by a slightly modified TWAS/FUSION framework, we identified five metabolites (including two dipeptides) showing significant associations with PDAC risk at false discovery rate (FDR) <0.05. Integrated with gut microbial information, two-sample Mendelian randomization (MR) analyses were further performed to investigate the relationship among serum metabolites, gut microbiome features and PDAC. The flavonoid-degrading bacteria Flavonifractor sp90199495 was found to be associated with metabolite X-21849 and it was also shown to be associated with PDAC risk. Collectively, our study identified novel candidate metabolites for PDAC risk, which could lead to new insights into the etiology of PDAC and improved treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻轻完成签到,获得积分10
刚刚
师宁完成签到,获得积分10
2秒前
2秒前
ChengYonghui完成签到,获得积分10
2秒前
nasya完成签到,获得积分10
2秒前
顾矜应助Maxpan采纳,获得20
3秒前
lmh完成签到,获得积分10
3秒前
踏实的幻香完成签到,获得积分10
4秒前
HOLLOW完成签到,获得积分10
4秒前
4秒前
爱笑的蘑菇完成签到,获得积分10
5秒前
慕青应助沉默傲薇采纳,获得10
6秒前
jtyt完成签到,获得积分10
6秒前
angelis发布了新的文献求助10
6秒前
6秒前
7秒前
共享精神应助吉祥高趙采纳,获得10
7秒前
Ll完成签到,获得积分10
7秒前
pbj发布了新的文献求助10
8秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
隐形曼青应助Brain采纳,获得10
10秒前
ahtj发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
洁净灭男完成签到,获得积分10
10秒前
燕儿完成签到,获得积分10
11秒前
连忘幽完成签到 ,获得积分10
11秒前
11秒前
大力的向日葵完成签到,获得积分10
12秒前
annaanna完成签到,获得积分10
12秒前
quhayley发布了新的文献求助30
12秒前
小王完成签到,获得积分10
12秒前
火星仙人掌完成签到 ,获得积分10
12秒前
共渡完成签到,获得积分10
12秒前
大模型应助柠檬采纳,获得30
12秒前
Yanzy完成签到,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259