双金属片
金属有机骨架
表征(材料科学)
催化作用
材料科学
纳米技术
打赌理论
化学工程
多相催化
粒径
比表面积
化学
有机化学
工程类
吸附
作者
Parvin Sanati‐Tirgan,Hossein Eshghi,Arezou Mohammadinezhad
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:15 (10): 4917-4931
被引量:11
摘要
Metal-organic frameworks as a unique class of high-surface-area materials have gained considerable attention due to their characteristic properties. In this perspective, herein, we report an eco-friendly and inexpensive route for the synthesis of 4(3H)-quinazolinones using magnetically separable core-shell-like bimetallic Fe3O4-MAA@Co-MOF@Cu-MOF NPs as environmentally-friendly heterogeneous catalysts. To the best of our knowledge, this is the first example of the integration of two different types of MOFs, which contain two different metal ions (Co2+ in the core and Cu2+ in the shell) using an external ligand. Our study not only introduces a novel nanostructured catalyst for the organic reaction but also presents a new strategy for the combination of two MOFs in one particle at the nanometer level. To survey the structural and compositional features of the synthesized nanocatalyst, a variety of spectroscopic and microscopic techniques including FT-IR, XRD, BET, TEM, HR-TEM, FE-SEM, EDX, EDX-mapping, TGA, VSM, and ICP-OES were employed. The combination of magnetic Co-MOF with Cu-MOF leads to achieving unique structural and compositional properties for Fe3O4-MAA@Co-MOF@Cu-MOF NPs with a particle size of 20-70 nm, mesostructure, and relatively large specific surface area (236.16 m2 g-1). The as-prepared nanostructured catalyst can be an excellent environment catalyst for the synthesis of a wide library of 4(3H)-quinazolinones derivatives, including electron-donating and electron-withdrawing aromatic, heteroaromatic, and aliphatic compounds under solvent-free conditions much better than the parent precursors. Moreover, by investigating the longevity of the nanocatalyst, the conclusion could be derived that the aforesaid nanocatalyst is stable under reaction conditions and could be recycled for at least seven recycle runs without a discernible decrease in its catalytic activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI