IoMT-Enabled Computer-Aided Diagnosis of Pulmonary Embolism from Computed Tomography Scans Using Deep Learning

肺栓塞 深度学习 背景(考古学) 人工智能 医学 特征(语言学) 放射科 计算机科学 机器学习 外科 语言学 生物 哲学 古生物学
作者
M. D. Reyad Hossain Khan,Pir Masoom Shah,Izaz Ahmad Khan,Saif ul Islam,Zahoor Ahmad,Faheem Khan,Youngmoon Lee
出处
期刊:Sensors [MDPI AG]
卷期号:23 (3): 1471-1471 被引量:25
标识
DOI:10.3390/s23031471
摘要

The Internet of Medical Things (IoMT) has revolutionized Ambient Assisted Living (AAL) by interconnecting smart medical devices. These devices generate a large amount of data without human intervention. Learning-based sophisticated models are required to extract meaningful information from this massive surge of data. In this context, Deep Neural Network (DNN) has been proven to be a powerful tool for disease detection. Pulmonary Embolism (PE) is considered the leading cause of death disease, with a death toll of 180,000 per year in the US alone. It appears due to a blood clot in pulmonary arteries, which blocks the blood supply to the lungs or a part of the lung. An early diagnosis and treatment of PE could reduce the mortality rate. Doctors and radiologists prefer Computed Tomography (CT) scans as a first-hand tool, which contain 200 to 300 images of a single study for diagnosis. Most of the time, it becomes difficult for a doctor and radiologist to maintain concentration going through all the scans and giving the correct diagnosis, resulting in a misdiagnosis or false diagnosis. Given this, there is a need for an automatic Computer-Aided Diagnosis (CAD) system to assist doctors and radiologists in decision-making. To develop such a system, in this paper, we proposed a deep learning framework based on DenseNet201 to classify PE into nine classes in CT scans. We utilized DenseNet201 as a feature extractor and customized fully connected decision-making layers. The model was trained on the Radiological Society of North America (RSNA)-Pulmonary Embolism Detection Challenge (2020) Kaggle dataset and achieved promising results of 88%, 88%, 89%, and 90% in terms of the accuracy, sensitivity, specificity, and Area Under the Curve (AUC), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
胡六条完成签到,获得积分10
刚刚
1秒前
劲秉应助呆瓜采纳,获得10
1秒前
手机应助呆瓜采纳,获得10
1秒前
劲秉应助呆瓜采纳,获得10
1秒前
1234应助呆瓜采纳,获得10
2秒前
2秒前
婷宝完成签到 ,获得积分10
3秒前
8R60d8应助Joan采纳,获得10
5秒前
5秒前
yyyyyy发布了新的文献求助10
6秒前
FartKing发布了新的文献求助30
7秒前
丘山完成签到,获得积分10
8秒前
zhw发布了新的文献求助10
8秒前
mew桑发布了新的文献求助10
9秒前
王九八发布了新的文献求助10
10秒前
11秒前
luchen发布了新的文献求助10
11秒前
ding应助FartKing采纳,获得30
11秒前
17秒前
传奇3应助Echo采纳,获得10
21秒前
JYZ发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
tianna发布了新的文献求助10
24秒前
大个应助无畏山海采纳,获得10
24秒前
FartKing发布了新的文献求助30
28秒前
魔幻的雁兰完成签到,获得积分10
29秒前
古藤完成签到 ,获得积分10
29秒前
无尽夏发布了新的文献求助10
29秒前
dm应助tianna采纳,获得10
30秒前
所所应助FartKing采纳,获得30
32秒前
科研通AI2S应助ling采纳,获得10
33秒前
是小裴呀完成签到,获得积分10
34秒前
35秒前
奶姜发布了新的文献求助10
36秒前
36秒前
37秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270599
求助须知:如何正确求助?哪些是违规求助? 2910018
关于积分的说明 8351861
捐赠科研通 2580473
什么是DOI,文献DOI怎么找? 1403490
科研通“疑难数据库(出版商)”最低求助积分说明 655841
邀请新用户注册赠送积分活动 635217