亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IoMT-Enabled Computer-Aided Diagnosis of Pulmonary Embolism from Computed Tomography Scans Using Deep Learning

肺栓塞 深度学习 背景(考古学) 人工智能 医学 特征(语言学) 放射科 计算机科学 机器学习 外科 古生物学 语言学 哲学 生物
作者
M. D. Reyad Hossain Khan,Pir Masoom Shah,Izaz Ahmad Khan,Saif ul Islam,Zahoor Ahmad,Faheem Khan,Youngmoon Lee
出处
期刊:Sensors [MDPI AG]
卷期号:23 (3): 1471-1471 被引量:25
标识
DOI:10.3390/s23031471
摘要

The Internet of Medical Things (IoMT) has revolutionized Ambient Assisted Living (AAL) by interconnecting smart medical devices. These devices generate a large amount of data without human intervention. Learning-based sophisticated models are required to extract meaningful information from this massive surge of data. In this context, Deep Neural Network (DNN) has been proven to be a powerful tool for disease detection. Pulmonary Embolism (PE) is considered the leading cause of death disease, with a death toll of 180,000 per year in the US alone. It appears due to a blood clot in pulmonary arteries, which blocks the blood supply to the lungs or a part of the lung. An early diagnosis and treatment of PE could reduce the mortality rate. Doctors and radiologists prefer Computed Tomography (CT) scans as a first-hand tool, which contain 200 to 300 images of a single study for diagnosis. Most of the time, it becomes difficult for a doctor and radiologist to maintain concentration going through all the scans and giving the correct diagnosis, resulting in a misdiagnosis or false diagnosis. Given this, there is a need for an automatic Computer-Aided Diagnosis (CAD) system to assist doctors and radiologists in decision-making. To develop such a system, in this paper, we proposed a deep learning framework based on DenseNet201 to classify PE into nine classes in CT scans. We utilized DenseNet201 as a feature extractor and customized fully connected decision-making layers. The model was trained on the Radiological Society of North America (RSNA)-Pulmonary Embolism Detection Challenge (2020) Kaggle dataset and achieved promising results of 88%, 88%, 89%, and 90% in terms of the accuracy, sensitivity, specificity, and Area Under the Curve (AUC), respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZTLlele完成签到 ,获得积分10
12秒前
yuxin完成签到 ,获得积分10
20秒前
朴实的小萱完成签到 ,获得积分10
27秒前
roro熊完成签到 ,获得积分10
29秒前
所所应助隐形从露采纳,获得10
31秒前
晴天漫漫完成签到 ,获得积分10
33秒前
飞飞style完成签到,获得积分10
47秒前
宋呵呵完成签到,获得积分10
56秒前
zzgpku完成签到,获得积分0
57秒前
1分钟前
弥里完成签到 ,获得积分10
1分钟前
Gina完成签到 ,获得积分10
1分钟前
hx完成签到 ,获得积分10
1分钟前
可一可再完成签到 ,获得积分10
1分钟前
Pauline完成签到 ,获得积分10
1分钟前
小胖完成签到 ,获得积分10
1分钟前
1nooooo完成签到 ,获得积分10
1分钟前
动听衬衫完成签到 ,获得积分10
1分钟前
li发布了新的文献求助10
1分钟前
Cooper应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得20
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
xzlijingjing完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
月满西楼完成签到,获得积分10
2分钟前
余念安完成签到 ,获得积分10
2分钟前
Gsrr完成签到 ,获得积分10
2分钟前
满意的伊完成签到,获得积分10
3分钟前
吉吉国王的跟班完成签到 ,获得积分10
3分钟前
3分钟前
wop111完成签到,获得积分0
3分钟前
小番茄完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
yb发布了新的文献求助10
3分钟前
Cooper应助科研通管家采纳,获得10
3分钟前
Cooper应助科研通管家采纳,获得10
3分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849764
求助须知:如何正确求助?哪些是违规求助? 6251336
关于积分的说明 15624748
捐赠科研通 4966137
什么是DOI,文献DOI怎么找? 2677780
邀请新用户注册赠送积分活动 1622107
关于科研通互助平台的介绍 1578186